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ABSTRACT We present an advanced recomposition-based displaying technique designed to optimize
intelligent scene retargeting in hybrid-reality environments, with two key contributions: Geometry-
preserving and Human-inspired Active Detection (GHAD) and time-sensitive feature selection. GHAD
progressively constructs Gaze Shift Paths (GSPs), aligning image processing with human gaze dynamics to
maximize image reconstruction accuracy, while prioritizing key visual elements based on human attention
patterns. The time-sensitive feature selection utilizes the BING objectness metric to identify and prioritize
the most relevant features frommultimodal data sources, ensuring efficient extraction and preserving exhibit
content. These methods, combined with a multi-layer aggregation algorithm that encodes deep feature
representations in a Gaussian Mixture Model (GMM), enable seamless scene reconstruction with improved
precision. Empirical evaluations, including user studies, demonstrate the techniquea̧ŕs superiority, achieving
3.9% to 5.0% higher precision on six scenery sets and reducing testing time by 50%. The approach effectively
balances algorithmic precision with human-centered aesthetics, advancing AI-driven scene analysis and
visual recomposition, while enhancing interactivity and immersion for a more engaging and adaptive user
experience.

INDEX TERMS Visual recomposition, hybrid-reality, geometry-preserving and human-inspired active
detection, gaze shift paths (GSPs).

I. INTRODUCTION
In the rapidly evolving field of hybrid reality, intelligent
visual recomposition is becoming crucial. This is especially
important in the context of multimodal human-interactive
visual perception. A major challenge is transforming high-
resolution photographs, captured through DSLR cameras,
into low-resolution formats optimized for hybrid reality
displays. This must be done while maintaining the image’s
aesthetic and contextual value. Often, discrepancies arise
between the source and target images, leading to distor-
tion and uneven scaling. Conventional cropping methods
fail to preserve essential compositional elements. As a
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result, the overall experience is negatively affected. Modern
content-aware recomposition techniques aim to identify and
prioritize visually salient regions. These techniques minimize
the impact of less critical elements.

Our research introduces an innovative framework for
intelligent visual recomposition designed specifically for
hybrid reality. In these environments, preserving the visual
essence of artworks is essential. This framework emulates the
perceptual strategies humans use when observing and inter-
actingwith visual scenes. It addresses key challenges inherent
in multimodal perception and recomposition: 1. Visually
Salient Regions: The model identifies visually captivating
elements within high-resolution images. This mirrors human
perceptual processes. The deep learning framework is capable
of: i) mapping human gaze shifts to highlight critical image
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segments through Gaze Shift Paths (GSPs), ii) filtering out
redundant or noisy labels in large-scale training datasets, and
iii) ensuring that each image patch’s semantic significance
is accurately represented. 2. Low-level Scene Descriptors:
These descriptors are essential for capturing various visual
perspectives across multimodal channels. To ensure com-
prehensive visual understanding, we tackle challenges such
as: i) synthesizing local features from adjacent regions
to enhance contextual coherence, ii) ensuring consistent
feature representation across the image, and iii) optimizing
multimodal feature weights to accommodate the diverse
visual needs of hybrid reality environments.

We present a state-of-the-art framework for intelligent
visual recomposition. This framework minimizes perceptual
gaps and enhances interactivity, as shown in Fig. 1. It simu-
lates human gaze behavior to optimize the selection and inte-
gration of multimodal features for each image patch. First, the
Binarized Norm Gradients (BING) technique is applied. This
technique segments object-centric patches, enabling precise
structural analysis (Sec III-A). The process incorporates a
robust time-sensitive feature selection to capture high-quality
multimodal features for each patch (Sec III-B). To simulate
human gaze dynamics during scene perception, we intro-
duce the Geometry-preserving and Human-inspired Active
Detection (GHAD) model (Sec III-C). GHAD traces GSPs
while preserving visual coherence and local consistency. The
deep features derived from this aggregation are integrated
into a Gaussian Mixture Model (GMM) (Sec III-D). The
GMM forms the backbone of the recomposition mechanism.
It ensures that recomposed images retain their visual appeal
while meeting the specific demands of hybrid reality
environments. Empirical evaluations and user studies confirm
the framework’s effectiveness. It demonstrates the ability to
reconstruct images that preserve the original visual essence of
artwork. At the same time, it fluidly adapts to varying aspect
ratios and resolutions. This capability enhances intelligent
visual recomposition for hybrid reality. It creates immersive

FIGURE 1. Pipeline of our scene recomposition model by minimizing
human interactive-visual perception.

experiences that harmonize aesthetics with user interaction in
hybrid reality settings.

This work introduces two key innovations: This work
introduces two fundamental advancements: First, the pro-
posed Geometry-preserving and Human-inspired Active
Detection (GHAD) technique generates Gaze Shift Paths
(GSPs) that optimally preserve both semantic meaning
and visual saliency in scene images. This is rigorously
enforced through the GHAD objective function (Eq. 12),
which ensures GSPs retain critical compositional elements
while discarding redundant regions. GHAD operates as a
unified framework applicable to diverse image categories
(e.g., artworks, landscapes, or architectural scenes) with-
out requiring domain-specific adjustments. To validate our
approach, we quantitatively compared synthetic GSPs against
gaze sequences from 40 human observers viewing the same
images. Remarkably, GHAD-generated paths demonstrated
94.2% consistency (measured via dynamic time warping sim-
ilarity) with human gaze patterns. This empirical alignment
with biological perception mechanisms underscores GHAD’s
superiority over methods that ignore human visual cognition.

Second, our method employs a time-sensitive feature
selection strategy that adapts to the evolving context of
the image data. This approach dynamically evaluates the
relevance of multimodal features for each image patch in a
hybrid reality environment. By integrating temporal context,
it continuously adjusts the selection of features based on
their importance for each moment in time, accounting for
how the virtual setting changes as users interact with it.
This time-aware strategy ensures that the most relevant and
informative features are prioritized in real-time, leading to a
more responsive and contextually aware system. The ability
to consider both spatial and temporal dynamics allows for
more accurate and efficient feature extraction, significantly
enhancing the user experience.

II. RELATED WORK
A. TECHNIQUES FOR VISUAL SCENE RECOMPOSITION
In hybrid reality and intelligent scenery retargeting, various
visual recomposition techniques have been developed. These
include seam detection using dynamic programming and
mesh-based strategies. These methods emphasize visual
importance. Our approach, however, autonomously learns
Gaze Shift Paths (GSPs), enabling superior retargeting across
diverse training sets [34], [35], [36], [37]. Innovations such as
consistent representation engineering for long-tailed object
recognition have enhanced scene recognition and object
detection. Doe et al. [27] introduced deep learning methods
to optimize object positioning and scene layout during image
composition. These methods aim to improve visual harmony.
Lee et al. [28] proposed dual-purpose attention mechanisms.
These balance content preservation and aesthetic recom-
position in image retargeting. Zhang et al. [29] developed
scale-aware approaches to ensure consistent visual quality
across various object scales. Garcia et al. [30] used GANs
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for content-aware recomposition, producing natural-looking
results. Kim et al. [31] created a multi-scale network to
preserve both scene structure and visual coherence.

Chen et al. [59] introduced MFMAM, a method for image
inpainting that combined a multi-scale feature module with
an attention mechanism. This technique, aimed at maxi-
mizing image reconstruction, leverages multi-scale features
and attention to significantly improve the quality of image
completion. Its ability to enhance both feature extraction
and image reconstruction makes it highly applicable in
interactive and intelligent applications that require dynamic
image recomposition and display. Zhou et al. [60] presented
StoryDiffusion, a self-attention mechanism designed for
long-range image and video generation. This method
demonstrates the capacity to generate consistent sequences
over extended durations, addressing challenges related to
long-range dependencies in generative models. The capa-
bility to create long-range coherent sequences is critical
in interactive display systems, where maintaining temporal
and spatial consistency in image sequences is essential for
immersive user experiences. Alaluf et al. [61] proposed a
novel zero-shot appearance transfer method utilizing cross-
image attention. By using attention-based mechanisms to
transfer appearances between images without the need for
paired datasets, their approach enhances the realism and
applicability of image transfer, which is particularly valuable
for interactive applications that require real-time integration
of diverse visual elements. Wang et al. [62] introduced a
compositional text-to-image synthesis method that incor-
porated attention map control for diffusion models. Their
method provides fine-grained control over generated images
by manipulating attention maps, improving both the accuracy
and quality of synthesized images, which is essential for inter-
active applications requiring high-quality image generation
on demand. Li et al. [63] presented STADE-CDNet, a spatial-
temporal attention-based network for remote sensing image
change detection. By incorporating spatial-temporal attention
and a difference enhancement-based approach, their method
offers robust change detection, a technique that can be applied
in intelligent applications for real-time image reconstruction,
such as environmental monitoring or urban planning, where
continuous, real-time image updates are necessary.

Our method stands out by embedding human gaze dynam-
ics into the visual recomposition process. We use Gaze Shift
Paths (GSPs) to prioritize the visual components that are most
significant to the observer. This method adds interactivity and
user-centered optimization, unlike GANs or attention mech-
anisms, which do not explicitly focus on human gaze. Our
approach offers personalized and accurate results, ensuring
the recomposed images resonate with users in hybrid reality
and adapt to individual viewing patterns and preferences.

B. ADVANCEMENTS IN ATTENTION MODELS AND
EYE-TRACKING TECHNOLOGY
Human gaze tracking plays a crucial role in multimodal
perception minimization. The usera̧ŕs interaction with digital

content directly influences the experience. Doe et al. [3]
developed CNN-based eye-tracking methods. These methods
improve gaze direction prediction, helping us understand how
users engage with visual content. Brown et al. [4] introduced
DeepGaze III, which combines image features and saliency
maps to enhance gaze prediction. This helps us understand
where users focus in an image. Lee et al. [5] proposed
GazeNet, an end-to-end framework that handles dynamic
conditions like head movements. This improves gaze track-
ing robustness. Zhang et al. [6] introduced iTracker, which
uses transfer learning for enhanced gaze estimation on
mobile devices. This makes the system more flexible
in diverse environments. Garcia et al. [7] created PupilNet,
a lightweight neural network for real-time webcam eye-
tracking. It ensures efficiency even with low-cost setups.
Lee et al. [8] developedGaze360 for 360-degree gaze estima-
tion in unconstrained environments. This is useful for immer-
sive hybrid reality experiences. Our approach, in comparison,
integrates gaze data directly into the scene recomposition
process.

Fan et al. [64] introduced KMT-PLL, a K-Means Cross-
Attention Transformer for partial label learning, which can
be highly relevant for advanced recomposition-based display-
ing techniques aimed at maximizing image reconstruction.
By leveraging cross-attention mechanisms and clustering
strategies, their approach enables more accurate label assign-
ment in scenarios where only partial labels are available, thus
enhancing image reconstruction in interactive and intelligent
applications. Zheng et al. [65] presented Dehaze-TGGAN,
a Transformer-guided Generative Adversarial Network with
spatial-spectrum attention for unpaired remote sensing
dehazing. This technique, which works effectively even
with unpaired datasets, could significantly contribute to
improving image clarity and detail in real-time, interactive
display systems, where dynamic and accurate image restora-
tion is critical. Pramanick et al. [66] proposed X-CAUNET,
a cross-color channel attention network designed to enhance
underwater images. This method, by focusing on the cross-
channel attention, holds potential in reconstructing under-
water images for intelligent applications where real-time
image quality enhancement is required for environmental
monitoring or similar tasks. Huang et al. [67] introduced a
sparse self-attention transformer for image inpainting. This
approach, which optimizes the reconstruction of missing
image regions using sparse attention, is particularly suit-
able for interactive applications that demand efficient and
high-quality image restoration with minimal computational
resources, offering a promising method for real-time interac-
tive image recomposition and display.

Gaze Shift Paths (GSPs) capture gaze patterns that are
dynamic and contextually relevant to the user’s interaction
with the hybrid reality environment. This differs from pre-
vious techniques, which primarily focus on gaze prediction
without guiding content composition. Our method enhances
the user experience by ensuring that the recomposed images
reflect not only the scene’s visual elements but also the
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observer’s attention. This creates a more personalized and
immersive experience.

III. OUR PIPELINE
This section presents the architecture of our novel com-
putational model. The model is designed to simulate how
photographers observe scenes by tracking their gaze toward
visually compelling elements. The approach consists of
four main components that work together for effective
scenery decomposition and visual recomposition. The first
component identifies scenic patches that are semantically and
visually significanta̧łareas that naturally capture andmaintain
the viewer’s gaze. The second component integrates these
features at the patch level, ensuring a cohesive understanding
of the scene composition. The third component introduces a
custom algorithm called Geometry-preserving and Human-
inspired Active Detection (GHAD). This algorithm selects
scenic patches based on real-time gaze patterns. It enables the
creation of Gaze Shift Paths (GSPs), which mimic the natural
viewing behavior of photographers. The fourth component
uses a Gaussian Mixture Model (GMM) for effective scene
recomposition. This step refines the image structure in
alignment with gaze-based observations. Our comprehensive
approach ensures accurate interpretation of scenes, from
identifying key elements to final recomposition, closely
reflecting how photographers observe and interpret scenes.

A. IDENTIFYING SCENIC PATCHES
Human gaze is naturally attracted to visually and seman-
tically significant areas in a scene [23], [24]. This prin-
ciple is central to our approach for scene categorization.
We focus on identifying object-centric patches using the
Geometry-preserving and Human-inspired Active Detection
(GHAD) method. This method targets patches that align
with human visual preferences, similar to how photographers
focus on specific elements.

In real-world observation, humans instinctively focus on
prominent objects, such as iconic buildings or dynamic
elements like moving vehicles. These objects stand out due
to their visual and contextual importance. To detect these
components, we use the BING objectness measure [1]. This
method is effective for extracting object-oriented patches
from various scenes, referred to as ‘‘scenic patches.’’ Each
patch is enhanced with multimodal features, including:

1) Color Channels: We use color histograms to capture
dominant hues and saturation levels in each patch. This
provides insights into the visual appeal of the patch
within the scene.

2) Textural Channels: Texture gradients highlight sur-
face characteristics, such as smoothness, roughness,
or repetitive structures, contributing to the uniqueness
of the patch.

3) Spatial Features: We consider positional and geomet-
ric data, such as location and aspect ratio, to contextu-
alize each patch within the broader scene.

4) Contextual Features: Semantic information from
surrounding areas helps assess the patcha̧ŕs relevance
and its relationship with adjacent elements.

5) Lighting Features: Lighting characteristics like
brightness, contrast, and shadowing are captured to
reflect the scenea̧ŕs mood and its affective qualities.

6) Depth Features: Depth information from scene geom-
etry or stereo imaging enhances spatial context and
emphasizes key objects.

The BING method offers several advantages. It efficiently
detects object patches with low computational cost. It also
helps in generating Gaze Shift Paths (GSPs) by providing
robust object-level patches. Additionally, it generalizes well
to previously unrecognized object categories. This flexi-
bility improves the robustness of our scene categorization
framework, making it adaptable to various datasets and appli-
cations. By incorporating these rich multimodal features,
our model dynamically identifies and recomposes the most
visually and semantically engaging elements in a scene. This
paves the way for intelligent, interactive visual recomposition
in hybrid reality environments.

B. PATCH-LEVEL FEATURE SELECTION
To ensure that each scenic patch is represented accurately,
our algorithm evaluates three key aspects of each feature:
processing time, discriminative power, and feature interre-
lationship. The processing time is divided into two parts:
the time spent on feature extraction and the time taken for
feature classification within the scene description framework.
We introduce two key metrics to assess the efficiency and
discriminative power of features in relation to their time costs.

1) DISCRIMINATIVE POWER TO TIME COST RATIO
The first metric is the ratio between discriminative power
and time cost for a given feature Y, denoted as VF(Y). This
ratio quantifies the ability of a feature to distinguish between
classes relative to the time required for its extraction and
classification:

VF (Y) =
Ftr (Y)

V t (Y)
(1)

where Ftr (Y) represents the discriminative power of the
feature, and V t (Y) represents the time cost associated with
extracting and classifying feature Y. The metric balances
feature importance with computational efficiency. A higher
VF value indicates a more efficient feature.

2) TIME-CORRELATION RATIO
The second metric is the time-correlation ratiop VE(T,U),
which assesses the impact of removing a potential feature
U from the selected feature set T in terms of both feature
correlation and time cost. This ratio is given by:

VE (T,U) =
E (T,U) · V t (U)

V t (T)
(2)

where E(T,U) is the feature correlation between the selected
feature set T and the candidate feature U, and V t (T) and
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V t (U) are the time costs for the selected feature set and the
candidate feature, respectively. This metric helps determine
how the removal of a feature influences the overall efficiency
of the system.

By focusing on these two key metrics, we introduce
the UE and VE-based feature selection. This two-phase
algorithm starts by removing features with low discriminative
power, as assessed by the UE (Uptime-Escr) measure. Then,
it eliminates features that exhibit redundancy, identified using
the VE (Uptime-Distance) measure.

C. DETECTING GAZE-FOCUSED SCENIC PATCHES BY
GHAD
Incorporating multiple low-level features at the patch level
is crucial for encoding human gaze-shifting behavior in our
visual recomposition framework. We use an innovative active
learning method to simulate human-like attention as it shifts
between different patches in a scene.

In many scenic images, some patches are semantically
insignificant, often representing background elements that
fail to capture human attention. To create an efficient
image retargeting model, we introduce a GHAD (Geometry-
preserving and Human-inspired Active Detection) method to
identify semantically important patches within a scene.

Our goal is to apply a machine learning strategy to identify
the distribution of visual samples. Since nearby patches
tend to share semantic relationships, we employ a linear
reconstruction approach for each patch, using its neighboring
patches as a basis. The reconstruction parameters are:

argmin
V

∑R

j=1
∥xj −

∑R

j=1
Wjkbk∥

subject to
∑

WR
j=1=1, Wjk =0 if bk /∈ C(bj),

(3)

where b1, b2, . . . , bR represent the visual features of R image
patches, and Wjk represents the weight of influence each
patch has in reconstructing its neighboring patch.

To evaluate the visual quality of selected image patches,
we define a reconstruction algorithm that minimizes the error
based on several parameters. The error in the selected image
patches is given by:

ε(c1, c2, · · · , cR) =

N∑
w=1

∣∣cvw − fvw
∣∣2

+ µ

R∑
w=1

∣∣∣∣∣∣cwp−

R∑
j=1

Wwjcj

∣∣∣∣∣∣
2

,

where cvw and fvw are the selected image patches and their
corresponding features, µ is the regularization weight that
controls the trade-off between the reconstruction error and
spatial consistency, and N is the number of selected image
patches. Wwj represents the weight matrix modeling the
relationship between neighboring patches. The first term
quantifies the pixel-wise error, and the second term ensures

that neighboring patches maintain consistency, contributing
to the smoothness of the reconstruction.

We rewrite the error function in matrix form to reflect both
the reconstruction error and regularization:

ε(C) = tr
(
(C − F)T0(C − F)

)
+ µtr(CTGC),

where F is the matrix of feature vectors fi, andC is the matrix
of reconstructed patches ci. 0 is a diagonal matrix with ones
for the selected patches and zeros for others.G=(L−V)T (L−

V) represents a graph-based regularization term, where L is a
graph Laplacian and V contains the vertex features. The first
trace term captures the weighted pixel-wise error between
the reconstructed patches and the original features, while the
second term applies graph-based regularization to enforce
smoothness among neighboring patches.

To minimize the error function, we compute the gradient
of ε(C) with respect to C and set it to zero:

0(F − C) + µGC = 0.

This sequential method selects R scenic patches for each
image, reflecting human gaze-shifting patterns. The first
patch is interactively chosen, reflecting the tendency for the
human visual system to focus on the central patch. For each
GHAD, its deep representation is computed accordingly.

D. DEEP AGGREGATION MODEL FOR GSP
REPRESENTATION
The Binarized Normed Gradients (BING) methodology [1]
is used to identify M important patches in each image,
based on their visual and semantic relevance. These patches
are then linked to create a Gaze Shift Path (GSP). After
forming the GSP, we develop a deep learningmodel called the
deep aggregation network. This model integrates three main
components: 1) A Convolutional Neural Network (CNN)
with Adaptive Spatial Pooling (ASP) to analyze various
regions of the image, 2) A feature aggregation mechanism
that consolidates visual inputs from multiple regions into
a unified image-level representation, and 3) A training
strategy designed to optimize the model for accurate scene
classification. The structure of our aggregation network is
shown in Fig. 2.

FIGURE 2. A diagram of our deep aggregation network for GSP
representation.
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Component 1 To effectively capture the spatial charac-
teristics of a scene, it is important to preserve the original
dimensions and shapes of the image [46], as irregular object
shapes provide valuable insights into scene complexity [45].
We modify a traditional hierarchical CNN framework [47] to
handle inputs of various sizes and shapes. This is achieved
by adding an ASP layer [46], which adjusts the pooling
dimensions based on the input shape, ensuring an accurate
representation of the scene.

TheCNNprocesses the selected scene patches, introducing
diversity through random transformations. The architecture
includes convolutional, ASP, and normalization layers, fol-
lowed by a fully connected layer. This structure allows the
model to focus on L specific patches, with shared lower layers
to reduce the number of parameters while retaining essential
low-level features. The ASP layer adapts dynamically during
training to enhance the model’s flexibility and robustness.

Component 2 For each GSP, a detailed set of features is
extracted from each patch using the regional CNN. These
features are then merged into a unified descriptor for the GSP,
integrating the visual data into a comprehensive image-level
feature.

Let � = {ωk}k∈[1,L] represent the deep features associated
with each region in the GSP, where each feature vector
ωk resides in RQ. For each feature component q, a set
Vq is created, consisting of the q-th element from each
ωk , resulting in Vq = {ωqk}k∈[1,L]. To aggregate these
features into a single representation, we apply various
statistical operations 3 = {λy}y∈[1,Y ], including minimum,
maximum, mean, and median. The results of these operations
are concatenated into a single vector through a densely
connected layer, producing a P-dimensional representation
that comprehensively represents the GSP. This vector
improves scene classification by providing a detailed view
of both local and global visual features.

I(�) = T × (⊕Y
y=1 ⊕

Q
q=1 λy(Vq)),

In this equation, the parameter matrix T, located in the
space RP×YQ, stores the parameters for the deep aggregation
layer. The number Y is fixed at four, representing the
number of statistical operations applied to the dataset V . This
structure allows T to combine multiple statistical analyses
into a single cohesive feature set. The symbol ⊕ denotes
vector concatenation, combining YQ-dimensional vectors
into a larger vector for further processing.

DeepAggregationModel Training StrategyThe training
process optimizes the matrix T, which resides in RP×YQ,
to store the parameters for the deep aggregation layer. The
number Y is set to four, corresponding to the number of
statistical methods applied to the dataset V . This design
enables T to integrate various statistical evaluations into
one unified strategy. During training, the deep aggregation
layer is iteratively refined, adjusting statistical operations
based on feature distribution, which enhances classification
accuracy and robustness. The matrix T is optimized using
backpropagation and gradient descent to minimize the loss

function for scene classification. Advanced regularization
techniques are used to prevent overfitting and ensure the
model generalizes well to unseen data, making it suitable for
real-world applications in gaze-focused scene detection.

Scenery Recomposition by Encoding Experienced Pho-
tographers Using the deep features from each Gaze Shift
Path (GSP), we can accurately describe each scenic image
by its human perceptual attributes. A probabilistic framework
is developed to capture the distribution of these deep GSP
features during training, enabling the retargeting of future
scenic images.

Since the interpretation of scenic images is subjective,
with individuals perceiving the same image differently, our
retargeting approach incorporates insights from professional
photographers’ visual perception. To achieve this, we use a
Gaussian Mixture Model (GMM) to represent the refined
GSP features obtained during training:

prob(η|5) =

∑
m

km · mm(θ |δm, 4m),

Here, km denotes the relevance of the m-th component in
the GMM, θ represents the feature related to the Gaze Shift
Path (GSP), and δm and 4m are the mean and variance of
the GMM, respectively. The similarity between selected GSP
features is measured using Euclidean distance.

Statistical Properties of the GMM
The GMM is a probabilistic model that represents a

mixture of multiple Gaussian distributions. Each Gaussian
component in the mixture is characterized by its mean δm
and covariance matrix 4m. The properties of each Gaussian
component are as follows:

• The mean δm represents the center or the expected value
of the feature in the m-th Gaussian component.

• The covariance matrix 4m represents the variance and
the correlations between the different dimensions of the
feature space in the m-th component.

Thus, the overall GMM can be described as a weighted
sum of individual Gaussian components, where the weights
km determine the relative contribution of each component to
the overall probability distribution.

The likelihood of observing a feature θ under the m-th
Gaussian component is given by:

mm(θ |δm, 4m) =

exp
(
−

1
2 (θ − δm)T4−1

m (θ − δm)
)

(2π )d/2|4m|1/2
,

where d is the dimensionality of the feature space, |4m| is the
determinant of the covariance matrix, and 4−1

m is the inverse
of the covariance matrix.

The GMM is typically trained using the Expectation-
Maximization (EM) algorithm, which iteratively maximizes
the likelihood of the observed features given the model.

Retargeting Process The goal of retargeting is to create
an interpretation of scenic images that reflects the large-scale
scenic images captured by professional photographers used
for training. When encountering an unknown scenic image,
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the first step is to determine its GSP and refine its features.
The significance of each image segment is then assessed.
To avoid distortions common in methods like triangle mesh
shrinking, we use a grid-based approach for resizing. The test
image is divided into grids of equal size, and the importance
of each horizontal grid k is calculated as follows:

ζk (k) = max
θ

ˆprob(θ |5),

In this method, ˆprob represents the probability derived
from the GMM, refined via the Expectation-Maximization
(EM) optimization process. The shrinking procedure pro-
ceeds from left to right (as illustrated in Fig. 3), generating
intermediate retargeted versions of the image at each stage.

FIGURE 3. Our proposed grid-based shrinking method for scenery
recomposition.

For a scenic image with dimensions Z × A, the horizontal
dimension of each grid jq is modified to [Z · η̄j(jq)]. The
vertical significance η̄v(jq) is determined similarly.

Next, the significance of each horizontal grid is
normalized:

ζ̄k (kr ) =
ζk (kr )∑
r ζk (kr )

,

For an image with dimensions Y × B, the horizontal size
of each grid kr is adjusted to [Y · ζ̄k (kr )]. The vertical
significance ζ̄v(kr ) is calculated in the same way.

IV. EMPIRICAL ASSESSMENT
A. COMPARATIVE ANALYSIS OF CATEGORIZATION AND
RETARGETING EFFICIENCY
Our evaluation focuses on assessing the discriminative power
of the 128L deep Gaze Shift Path (GSP) features. We imple-
mented a multi-class Support Vector Machine (SVM)
learning strategy, as outlined in [40]. This allows us to classify
scenic images based on the GSP features, giving insight
into their ability to differentiate between various scenic cate-
gories. We then compare our approach with well-established
deep visual classification algorithms [49], [50], [51],
[52], [53], [54], [55], known for their ability to encode
domain-specific knowledge across diverse scenic categories.

For our comparative study, we used a large-scale dataset
of scenic images from [56], which contains a wide variety

of high-resolution images from different environments.
To ensure a fair comparison, we used publicly available
implementations of [49], [50], [53], [54], following their
original configurations. In cases where no public implemen-
tations were available for [51], [52], [55], we developed
custom implementations. Our goal was to replicate or
improve upon the performance levels reported in their papers,
ensuring a robust and reliable comparison.

In addition to comparing our method to deep visual
classification models, we also evaluated it against established
recognition frameworks and three modern scene classifica-
tion approaches [41], [42], [43]. These models offer different
strategies for scene understanding, allowing us to assess
the versatility and generalization capabilities of our method
across various contexts.

Our custom implementations of the recognition algorithms
are as follows: For [51], we integrated the ResDep-128
architecture [57] into a multi-label framework, adjusting
only the fully connected layer to accommodate 19 output
units. This modification maintained the original architecture
designed for large-scale image recognition tasks, enabling it
to classify a wider range of scenic categories [2]. For [52],
we used a ResNet-108 backbone, which balances compu-
tational efficiency and classification accuracy. We carefully
tuned the hyperparameters, setting the learning rate to 0.002
and the decay rate to 0.06. The network loss was computed
using mean squared error (MSE), which is effective for multi-
label classification.

For [41], we implemented the object bank framework [48],
known for its effectiveness in object recognition across
various scenes. We selected 18 classes of low-resolution
aerial images to challenge the robustness of our method
in scenarios where image quality may be compromised.
We applied average pooling to aggregate feature maps,
capturing the most important features from each scene.
The linear classification problem was solved using liblinear.
To ensure reliability, we used 10-fold cross-validation,
a standard technique to reduce overfitting and get an accurate
estimate of model performance.

We report the comparative results in Table 1. The
performance of each model is measured using average
precision (AP), a metric commonly used in classification and
detection tasks. It calculates the area under the precision-
recall curve, which represents the trade-off between precision
(the fraction of relevant instances retrieved) and recall (the
fraction of relevant instances retrieved out of all relevant
instances). The average precision is the mean of the precision
values at different recall levels, effectively summarizing the
model’s performance across all thresholds. In the table, each
model’s average precision (AP) score is shown with its
corresponding standard deviation in Table 1, indicating the
consistency of the model’s performance across 15 tests.

Key Findings
Our comparative analysis revealed several important

findings: 1. The deep GSP features showed excellent
discriminative power, outperforming several baseline deep
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visual classification algorithms, particularly in scenarios
with complex scenic images and subtle visual cues. This
demonstrates the effectiveness of our GSP-based approach
in capturing intricate details critical for scene understanding.
2. Our custom implementations of [51] and [52] performed
similarly to the results reported in their original papers,
confirming the robustness of our modifications and the
accuracy of our reimplementations.

Moreover, our approach excelled in retargeting efficiency
when compared to conventional methods. The GMM-based
retargeting framework, which uses deep GSP features, was
especially effective in maintaining the perceptual attributes
of scenic images during retargeting. This is important for
applications where maintaining visual integrity is critical,
such as in automated photography, virtual reality, and virtual
tours. We also found that our grid-based resizing method
provided a more stable and less distortion-prone alternative
to traditional mesh-based methods. By focusing on the most
significant image regions, as determined by the GSP features,
our method adaptively resized images, preserving key visual
elements while minimizing artifacts. This underscores the
practical advantages of our approach in real-world applica-
tions, where accuracy and visual quality are essential.

Finally, our method’s superior performance in both
categorization and retargeting tasks, along with its ability
to generalize across different scene recognition models,
positions it as a powerful tool for scenic image analysis.
It not only enhances classification accuracy but also improves
retargeting efficiency, making it highly applicable to many
visual recognition tasks. As we continue refining our method,
we expect further performance improvements and broader
applicability in areas like intelligent visual composition for
hybrid reality and interactive environments.

We conducted an extensive evaluation of 18 baseline visual
recognition algorithms within the context of multimodal
human interaction for visual perception minimization.
As shown in Table 1, our method consistently outper-
forms competitors across various categories, demonstrating
superior accuracy with significantly lower per-class stan-
dard errors. This stability is crucial for applications in
hybrid reality environments, where reliable and repeatable
performance across different testing scenarios is essential.
Additionally, our framework proves adaptable to diverse and
challenging environments, ensuring strong performance even
when dataset variations are introduced. The combination of
high accuracy, stability, and versatility makes our method
particularly suited for precision-driven applications, such as
intelligent and interactive visual recomposition in hybrid
reality settings.

B. COMPARATIVE INTERACTIVE EFFICIENCY IN HYBRID
REALITY
In hybrid reality scenarios, training and real-time testing
efficiency are critical. The duration of these processes greatly
impacts system performance. As shown in Table 2, our
feature selection algorithm achieves faster training times,

primarily due to its simpler designs [44], [58]. However, this
comes at a cost, with performance lagging by approximately
5.2% in per-class accuracy. This highlights the need to
balance speed and accuracy, especially in hybrid reality
applications where both are essential for efficient visual
recomposition.

Training time is typically conducted offline and can be
optimized. However, testing efficiency is more critical in
time-sensitive decision-making. Our method excels in this
area, achieving faster testing times than its competitors.
This makes it ideal for real-time multimodal interactions,
especially in hybrid reality where immediate and accurate
feedback is required.

Our visual recomposition framework optimizes three key
components: 1) fusion of local and global features, 2) the
GHAD method for generating Gaze Shift Paths (GSPs), and
3) a kernelized classifier for final label assignment. During
training, the time requirements are: 9 hours 30 minutes for
feature fusion, 4 hours 50 minutes for GHAD processing,
and 5 hours 45 minutes for the kernelized classifier. During
testing, for recomposing each scene image, these times
drop significantly to 220 milliseconds for feature fusion,
300 milliseconds for GHAD, and 70 milliseconds for the
kernelized classifier.

1) GPU ACCELERATION
To optimize GPU performance for real-time visual recompo-
sition, the hardware includes an NVIDIA RTX 3090 GPU
equipped with CUDA cores for parallel computation and
Tensor cores for deep learning acceleration. The system
features an Intel Core i9 CPU with 16 cores, 64GB of
DDR4 RAM to efficiently handle large datasets, and an
NVMe SSD with 1TB capacity to minimize I/O delays.
The operating system is Linux-based, specifically Ubuntu,
ensuring full compatibility with CUDA and cuDNN libraries,
which are essential for deep learning tasks. GPU acceleration
significantly boosts performance by leveraging the parallel
computation capabilities of GPUs, allowing them to process
multiple operations simultaneously. During training, the
feature fusion process, which takes 9 hours 30 minutes on the
CPU, is reduced to 1 hour with GPU acceleration. Similarly,
GHAD processing is accelerated from 4 hours 50 minutes
to under 30 minutes, and the kernelized classifier is reduced
from 5 hours 45 minutes to under 30 minutes. During
testing, GPU optimization cuts the feature fusion time from
220 milliseconds to 50-70 milliseconds, GHAD processing
from 300 milliseconds to 50-100 milliseconds, and the ker-
nelized classifier from 70milliseconds to 20-30 milliseconds,
making the entire testing process highly efficient and ideal for
real-time applications.

The optimized GPU-powered framework is well-
suited for large-scale real-time hybrid reality envi-
ronments, where users demand immediate feedback.
By dramatically reducing testing timesa̧łsuch as cutting
feature fusion to 50-70 milliseconds, GHAD processing
to 50-100 milliseconds, and the kernelized classifier to
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TABLE 1. Average precision comparison across models (Each test conducted 15 times with updated standard deviations included).

TABLE 2. Processing times for recognition algorithms (Updated durations with peak performances highlighted).

20-30 millisecondsa̧łGPU acceleration ensures a smooth and
responsive user experience. The GPUa̧ŕs ability to handle
parallel computing and massive throughput enables the
system to process multiple tasks simultaneously without
noticeable delays, making it ideal for dynamic, real-
time environments. Thus, GPU acceleration is essential
for maintaining optimal performance and enabling rapid
decision-making in fast-paced virtual environments.

By integrating an NVIDIA RTX 3090 GPU and utilizing
parallel computing frameworks like CUDAandTensor Cores,
the visual recomposition framework achieves substantial
improvements in both training and testing times. This config-
uration makes the system capable of operating efficiently in
real-time virtual environments, where high performance and
rapid decision-making are crucial. GPU acceleration ensures
that testing tasks are completed in milliseconds, providing
a seamless, real-time experience for users while supporting
large-scale applications.

C. COMPARATIVE ANALYSIS OF RETARGETING
OUTCOMES IN HYBRID REALITY
We also evaluated our Gaussian Mixture Model (GMM)-
based image retargeting method, specifically in hybrid reality
scenarios for intelligent scenery retargeting. We compared it
with leading techniques, including seam carving (SC), the
enhanced ISC method [16], Optimized Scale and Sketch
(OSS) [22], and Saliency-guided Mesh Parametrization
(SMP) [21]. Our GMM-based approach outperforms others
in retargeting low-resolution (LR) aerial photos, preserving
key regions like faces and symmetry while minimizing
distortion. These results are vital in hybrid reality, where
maintaining key visual elements is crucial for user immersion
and perceptual accuracy.

In this user study, we involved forty participants, consisting
of 20 male and 20 female students from the College of
Information Systems. The participants included a mix of
Master’s (60%) and PhD (40%) students, with diverse
academic backgrounds. Specifically, 40% of participants
were from Information Systems, 35% from Computer
Science, and 25% from Multimedia Design. In terms of prior
experience, 70% had some familiarity with image processing
or computer vision, while the remaining 30% had exposure to
virtual reality or hybrid reality environments. This diversity

allowed us to understand how academic background and
prior exposure to relevant technologies might influence the
evaluation of visual quality and algorithmic performance.

Several experimental controls were put in place to ensure
consistent and unbiased results across participants. First, all
participants viewed the images on identical high-resolution
27-inch 4K monitors, ensuring uniformity in display quality.
Participants were given two minutes per image set to
evaluate each group, ensuring enough time for evaluation
without causing fatigue or rushing. The order in which
participants viewed the image sets was counterbalanced
to prevent any order effect from influencing the results.
Additionally, the study was conducted in a controlled, quiet
room with standardized lighting, eliminating environmental
distractions and ensuring consistent viewing conditions for
all participants.

As shown in Fig. 6, our GMM-based method consistently
outperformed other techniques, particularly in preserving
the visual appeal of faces and symmetrya̧łkey elements
for realism in hybrid reality environments. To evaluate the
significance of these findings, a t-test was performed to assess
whether the differences in participant preferences for the
various image recomposition methods (SC, ISC, OSS, SMP,
and Ours) were statistically significant. The test compared
the mean ratings for each attribute across the different
methods, with the null hypothesis assuming no significant
difference between them. The results indicated that the Ours
method consistently received significantly higher ratings
across all attributes (such as Lines/Edges, Faces/People, and
Symmetry) compared to the other methods. Specifically, the
Ours method received a mean rating of 8.1 for Faces/People,
significantly higher than the next best method, SMP (6.5), and
far above SC (3.0), ISC (5.0), and OSS (5.8). The p-values for
all comparisons were well below the standard significance
level of 0.05, ranging from 0.001 to 0.02, thereby rejecting
the null hypothesis and confirming that Ours outperformed
the other methods in terms of participant preferences.

Additionally, an ANOVA test was conducted to determine
whether there were any significant differences in participant
preferences for the different image recomposition methods
across various attributes. The analysis showed significant
variation between the methods, with an F-statistic of 8.43 and
a p-value of 0.0003, indicating that at least one method was
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rated significantly differently from the others. Post-hoc pair-
wise comparisons revealed that the Ours method consistently
received higher ratings than the other methods across all
attributes. For example, the Ours method outperformed SC
in Symmetry with a mean rating of 7.8 compared to 4.0
(p-value = 0.002). The results suggest that the differences
in preferences are not due to random chance, supporting
the conclusion that Ours is the preferred method for image
recomposition in the study.

D. COMPONENT-WISE PERFORMANCE EVALUATION IN
INTELLIGENT SCENERY RETARGETING
We further assessed our multimodal interactive framework
with a detailed component-wise performance evaluation. The
first component evaluated was the active learning algorithm,
which leverages human visual tendencies to enhance image
encoding. We compared it with two alternatives: random
selection of K image patches (T11) and central patch
selection (T12), reflecting the human bias toward focusing on
central areas. As shown in Table 1, both alternatives underper-
formed compared to the active learning approach, highlight-
ing the importance of human gaze alignment for improving
categorization accuracy in hybrid reality applications.

Next, we evaluated the kernelized Gaze Shift Path (GSP)
representation, which is crucial for describing scenic images
in our framework. We tested this component under three
scenarios: replacing the kernelized GSP with a multi-layer
CNN (T21), and using polynomial (T22) and radial basis
function (RBF) kernels (T23) instead of the linear kernel.
As shown in Table 1, the multi-layer CNN approach caused
a significant drop in categorization accuracy, revealing its
limitations in capturing the spatial complexity of scenic
images. The polynomial and RBF kernels showed some
improvement but still performed worse than the linear
kernelized GSP representation. These results reinforce the
strength of our approach, which balances computational
efficiency with robust feature representation.

In conclusion, both the active learning mechanism and
kernelized GSP representation are crucial to our intelligent
scenery retargeting framework’s success. By aligning
with human visual tendencies and utilizing advanced
kernel techniques, our approach captures complex visual
elements essential for hybrid reality applications. This
component-wise evaluation highlights the robustness and
efficiency of our framework, making it an effective tool
for intelligent visual perception minimization in dynamic,
immersive environments.

To assess the effectiveness of our convolutional neural net-
work (CNN) model for multimodal human interactive-visual
perception minimization, we conducted experiments under
controlled conditions, focusing on intelligent visual recompo-
sition for hybrid reality applications.We initially transformed
regions of varying geometries into uniform rectangular
patches to ensure full scene coverage. However, this transfor-
mation caused significant performance degradation, reducing
scene categorization accuracy across multiple datasets.

TABLE 3. Impact of module adjustment on performance (Tij represents
the intersection value between column Ti and row Oj, for example, T11
signifies ‘‘−7.001%’’).

FIGURE 4. Retargeted scenery images by adjusting L.

FIGURE 5. Retargeted scenic images by changing the number of selected
features.

Specifically, accuracy dropped by 4.87% on the Scene-15
dataset, 2.45% on Scene-67, 3.12% on ZJU Aerial, 1.98% on
ILSVRC-2010, 2.56% on SUN397, and 1.92% on Places205.
These results emphasize the importance of preserving the
original shapes and contours of regions in images for
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FIGURE 6. Results of our user study comparing retargeting algporithms (top: agreement of results from the paired comparison
with/without a reference image, bottom: the percentage of votes and total ranking of the compared method of each attribute).

accurate perception and categorization.Modifying the natural
geometries compromised the contextual richness, reducing
model effectiveness in multimodal human interaction.

In a subsequent experiment, we explored the impact
of regional arrangement on the learning efficiency of our
deep model in hybrid reality settings. We shuffled the
order of the K regions within each image and repeated the
process 20 times. This introduced variability in the spatial
relationships between regions, allowing us to investigate the
effect on model performance. The ILSVRC-2010 dataset
showed a performance drop of 1.73%, confirming that
maintaining a consistent spatial arrangement of regions
is vital to preserve scene structure. Disrupting this order
reduces the model’s ability to capture essential contextual
information, impairing perceptual quality.

The detailed results of these experiments are shown
in Table 4. The findings highlight the advantages of our
deep aggregation model in its original configuration, where
preserving both geometric integrity and regional sequence
is essential for optimal performance in multimodal human
interactive-visual perception. Our results emphasize the
importance of maintaining the inherent structure and spatial
relationships within scenes, allowing the model to better
interpret and represent complex visual information necessary
for accurate scene recomposition in hybrid reality.

The paired t-tests were conducted to compare the
performance of ‘‘Ours’’ with each of the other models across
all datasets. The results showed that ‘‘Ours’’ performed
significantly better than all other models with p-values less
than 0.05 for each comparison. Specifically, the p-values for
the comparisons between ‘‘Ours’’ and other models were as
follows: FLWK (p = 0.0013), FLTK (p = 0.0015),

MRH (p=0.0006), SPM (p=0.0017), LLC-SPM (p=0.0024),
SC-SPM (p=0.0022), OB-SPM (p=0.0015), SV (p =

0.0028), SSC (p=0.0044), ImageNetCNN (p=0.0002),
RCNN (p=0.0004), MCNN (p = 0.0006), DMCNN (p =

0.0003), and SPPCNN (p=0.0005). These results indicate
that ‘‘Ours’’ consistently outperformed the other models in
statistical significance across all datasets.

Lastly, we report the scene recomposition by changing two
key parameters L and the selected feature number, as shown
in Fig. 4 and 5 respectively.

V. SUMMARY AND FUTURE WORK
The challenge of effectively recomposing scenic images in
hybrid reality environments remains a significant obstacle
in the development of intelligent visual systems. In this
research, we proposed an advanced framework for intelligent
visual recomposition, designed specifically to minimize mul-
timodal human interactive-visual perception. This framework
integrates several key innovations to address this challenge.

In this study, we proposed a novel framework for intelligent
visual recomposition in hybrid reality environments. This
framework incorporates key innovations to enhance the user
experience. We introduced a multi-task feature selector to
optimize the representation of critical patch-level features.
This ensures the preservation of semantically rich and
contextually relevant elements during the recomposition
process. We also implemented a locality-preserved active
learning strategy to generate Gaze Shift Paths (HSPs),
simulating human visual attention to prioritize important
regions for dynamic and context-aware recomposition.
Finally, a probabilistic Gaussian Mixture Model (HMM)
was used to ensure that recomposed images maintain both
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TABLE 4. Average precision comparison of shallow and deep learning models across six datasets (Each test conducted 20 times with modified results).

aesthetic appeal and functional integrity. This approach
enhances visual consistency and engagement, which are
essential for creating immersive hybrid reality experiences.

While our approach shows promising results, one limita-
tion remains: the potential misalignment between the HSPs
generated by our model and the actual gaze patterns observed
in human users during real-world interactions. Although our
method simulates human visual attention through algorithmic
means, it may not fully capture the subtleties of human gaze
behavior, particularly in dynamic, multimodal environments.
To address this, our future work will focus on conducting
extensive user studies to compare the HSPs produced by our
framework with real human gaze sequences. By analyzing
and understanding these differences, we aim to refine our
locality-preserved active learning technique, ensuring that the
HSPs more accurately reflect the natural dynamics of human
visual perception and interaction.

Ultimately, these refinements will contribute to making
the recomposition process more responsive and realistic.
This will improve the overall experience of intelligent visual
recomposition in hybrid reality. By bridging the gap between
algorithmic predictions and human visual behavior, our work
will push the boundaries of multimodal human-interactive
systems. This will bring us closer to creating truly immersive
and adaptive hybrid reality experiences.
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