

ITAS

XVIth INTERNATIONAL IZMIR TEXTILE AND APPAREL SYMPOSIUM

BOOK OF Abstracts

25-27 October 2023 Altın Yunus Hotel, Cesme - *izmin*

XVITH INTERNATIONAL İZMİR TEXTILE & APPAREL SYMPOSIUM

IITAS 2023

OCTOBER 25 - 27, 2023 İZMİR-TÜRKİYE

BOOK OF ABSTRACTS

Organizer IITAS 2023 is organized by Ege University Faculty of Engineering, Department of Textile Engineering

IITAS 2023 XVITH INTERNATIONAL İZMİR TEXTILE & APPAREL SYMPOSIUM

BOOK OF ABSTRACTS

EDITORS

E. Perrin AKÇAKOCA KUMBASAR Tuba BEDEZ ÜTE Mehmet KÜÇÜK Seniha MORSÜMBÜL Hale KARAKAŞ İs A. Merih SARIIŞIK

R Ege University Ege University Ege University Ege University İstanbul Technical University Dokuz Eylül University

XVIth International İzmir Textile & Apparel Symposium IITAS 2023 ISBN 978-605-338-429-8 (e-book)

No part of this abstract book may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of IITAS Organizing Committee and Ege University. IITAS Organizing Committee is not responsible for to intervene correction of the content structure or grammatical writtings and language of the articles. This responsibility belongs to the author(s).

Investigation of Bleaching and Dyeability of Knitted Fabrics by Foam Application Method Seda Keskin ¹ , Onur Balci ² , Koray Pektas ² , Durul Büsra Dilden ¹
¹ Eren Retail & Textile Inc R&D Center, Türkiye
² Kahramanmaraş Sütçü İmam University, Türkiye
Investigation of UV Resistance Properties of Bicomponent Yarns Produced with Different Additives <u>Kerim Kılınç^{1,3}</u> , Hüsnü Kemal Gürakın ² , Eda Çorapçı ^{1,3} , Ahmet Turan ² ¹ Polyteks Tekstil Sanayi Araştırma ve Eğitim AŞ, R&D Center, Türkiye ² SETAS Kimya Sanayi AS, Color Cantar, Türkiye
³ Bursa Uludağ University Türkiye 101
Passive Smart Cellulosic Knitted Fabrics with Enhanced Permeability and Absorption Features
Nazife Korkmaz Memiş ¹ , Sibel Kaplan ¹ , <u>Mehmet Kertmen²</u>
² Iskur R&D Center, Türkiye
Design of a Drysuit with Improved Thermal Management Properties for Cold Water Applications <u>Bilge Koyuncu¹</u> , Sena Cimilli Duru ² , Cevza Candan ² , Banu Nergis ² , M. Murphy Peksen ³ ¹ DeepTech Engineering Ltd., Türkiye
² Istanbul Technical University, Türkiye
³ Technische Universität München, Germany105
Heat On-The-Go: Design of A Baby Bottle Warmer Bag with A Textile-Based Heater System <u>Bilge Koyuncu¹</u> , Sena Cimilli Duru ² , Banu Nergis ² , Cevza Candan ² ¹ DeenTech Engineering Ltd Türkive
² İstanbul Technical University, Türkiye
Digital Transformation and Its Effects on Productivity in a Clothing Company Mehmet Küçük¹ , <u>Safak Birol²</u> ¹ Ege University, Türkiye
² TYH Izmir R&D Center, Türkiye
The Advanced Technology for Compression Garment Design <u>Olena Kyzymchuk^{1,2}</u> , Yordan Kyosev ¹ , Liudmyla Melnyk ² , Jessica Boll ¹
² Kyiv National University of Technologies and Design, Ukraine
Textile Reinforced Concrete: A Comprehensive Review Elifsu Hazal Morgül, Güldemet Başal Bayraktar, Sevda Altaş Ege University. Türkiye
Tea Tree Oil Loaded Nanofibers for Wound Dressing Applications
<u>Senina Morsumbui</u> , E. Perrin Akçakoca Kumbasar, Anmet Çay, Ayını Şendemir, Sait Berkay Cetintas. Ecenaz Merve Namlı
Ege University, Türkiye
The Pressure Characteristics of Elastic Warp Knitted Fabrics Nida Oğlakcıoğlu¹ , Arzu Marmaralı¹ , <u>Olena Kyzymchuk^{2,3}</u> , Berna Cüreklibatır Encan¹ , Gözde Ertekin¹ , Liudmyla Melnyk² ¹ Ege University, Türkiye ² Kviv National University of Technologies and Design. Ukraine
³ Technische Universitat Dresden, Germany

THE PRESSURE CHARACTERISTICS OF ELASTIC WARP KNITTED FABRICS

Nida Oğlakcıoğlu¹, Arzu Marmaralı¹, <u>Olena Kyzymchuk^{2,3}</u>, Berna Cüreklibatır Encan¹, Gözde Ertekin¹, Liudmyla Melnyk²

¹ Ege University, İzmir, Türkiye ² Kyiv National University of Technologies and Design, Kyiv, Ukraine ³ Technische Universitat Dresden, Germany <u>olena.kyzymchuk@mailbox.tu-dresden.de</u>

Medical textiles are an essential sub-group of technical textiles. With the use of textile products for medicinal purposes, diseases could be prevented or healed. As the life expectancy of humans extends and individuals become less active, medical conditions regarding the musculoskeletal system have become prevalent. For the treatment of these medical problems, elastic textile materials, such as corsets, bandages, posture correctors, wristbands, etc., are suggested by physicians. These elastic textile products must have various physical and mechanical properties to provide comfort for the user and fulfill their duty. Such properties are elongation, elasticity, air and relative water vapor permeability, thermal conductivity/resistance, and compression. Characteristics required to provide the necessary compression usually go against with the properties related to comfort. Therefore, an optimum balance between compression and comfort should be maintained.

In this study, elastic warp-knitted samples suitable for medicinal use were produced with different guide bar threading arrangements and weft yarn materials. The elastic warp-knitted fabrics were produced on a 15-gauge, T.C.H. crochet knitting machine with four guide bars. Yarn feeding tension, fabric takedown load, and the number of used needles were kept constant for all samples. The closed pillar stitches (Figure 1(a)) were knitted using 16.7 tex polyester threads which were fed from a fully threaded guide bar for the ground. The 0.8 mm diameter polyurethane thread was longitudinally fed into the knitting zone with a preliminary elongation of 270%. To determine the influence of the guide bar threading arrangement on the fabric structure and parameters, five different polyurethane threading options were used as given in Table 1. The other two guide bars (Figure 1(c) and (d)) were used to insert weft yarns in the transverse direction on both sides of the polyurethane threads. Four different yarns were used as weft yarns to create elastic fabrics with various raw material compositions (Table 2).

Figure 1. Lapping diagram: (a) first guide bar (pillar stitch), (b) third guide bar (elastomer thread), and (c) and (d) second and fourth guide bars (weft yarns).

Threading		Type of materials	
Ι	1 in, 1 out	PET 2	33.4 tex polyester (96 filaments) 2 ply
	(50 %)		
II	2 in, 1 out	PET 4	33.4 tex polyester (96 filaments) 4 ply
	(67 %)		
III	3 in, 1 out	COT	29.0 tex cotton yarn 4 ply
	(75 %)		
IV	Full	LIN	29.0 tex linen yarn 4 ply
	(100%)		

Table 1. Threading of elastomer thread and type of weft yarn materials

According to the experimental plan, 15 variants of elastic warp-knitted fabrics which have different threading arrangements for elastomer threads and different raw materials for weft yarn were manufactured. In our former study, the structural and elastic properties of the samples (mass per unit area, stitch density, thickness, and elastic behavior) were determined [1]. In the following research, the thermal comfort properties of the samples (fabric density, air permeability, thermal conductivity, thermal resistance, and water vapor resistance) were tested [2]. Investigating the effect of elastomer threading arrangement and weft yarn material on compression characteristics of the samples was aimed in this research. The pressure exerted by elastic textile materials depends on their structural properties such as raw material, fabric structure, elongation, elasticity, and additionally the diameter of the usage area. In order to obtain different extension values (8%, 20%, and 32%), three measurement disks have different diameters (8, 9, and 10 cm). The pressure measurements were taken with a Kikuhime pressure monitor.

The pressure results were evaluated according to weft yarn type, threading arrangement of elastane threading, and extension. It was revealed that pressure increased with the increment of elastane and extension ratios. Besides, cotton and linen samples exhibited higher pressure (Figure 2) due to their lower extensibility.

Figure 2. Pressure results at 8% extension

Keywords: Warp knitting, medical textiles, laid-in yarn, elastomer threading, compression

REFERENCES

[1] KYZYMCHUK, O., MELNYK, L., MARMARALI, A., OĞLAKCIOĞLU, N., ERTEKİN, G., ARABULI, S., ARABULI, A. and CÜREKLİBATIR ENCAN, B. The effect of weft yarn type and elastomer yarn threading on the properties of elastic warp knitted fabrics. Part 1: Structure and elasticity [cited 22.05.2023]. Available on https://doi.org/10.1177/15589250231167405

[2] KYZYMCHUK, O., MARMARALI, A., MELNYK, L., OĞLAKCIOĞLU, N., ERTEKİN, G., CÜREKLİBATIR ENCAN, B., ARABULI, S. and ARABULI, A. The effect of weft yarn type and elastomer yarn threading on the properties of elastic warp knitted fabrics. Part II: Thermal comfort properties [cited 22.05.2023]. Available on https://doi.org/10.1177/15589250231171582