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SUMMARY 

 

 

Chunzi Zang. Biodesign of nanoantibodies . – Manuscript. 

Qualification thesis on the specialty 162 «Biotechnology and 

Bioengineering». – Kyiv National University of Technologies and Design, Kyiv, 

2024. 

Nanobody is an antibody found in naturally missing light chains in camel 

families such as alpaca and monama, as well as cartilage fish such as sharks and 

rays, including two constant regions, a hinge region and a heavy chain variable 

region. With its small size, high stability, strong affinity, low cytotoxicity, 

strong penetration, and simple humanization, it is widely used in disease 

diagnosis, treatment and novel nanodrug design. Traditional nanobody 

acquisition methods for animal immunization or library screening. The 

traditional preparation methods have the disadvantages such as cumbersome 

process, poor specificity, difficult protein expression, and inability to target 

specific epitopes. Therefore, innovative strategies are needed to transform the 

sequence and structure of nanobodies and design new antibodies that are not 

available in nature. Nowadays, through the artificial intelligence method to deep 

learn the complete information of the target antigen, the variable region of the 

antibody and the complex internal and external physical effects of the antibody, 

which can effectively generate the 1D sequence and 3D structure of the antibody 

CDR region. Nanobodies designed by artificial intelligence have strong antigen 

targeting characteristics, expression ability and generalization ability, and have 

wide application prospects. Taking diffab and AlphaPanda as an example, this 

paper introduces the design method of AI antibody in detail from the aspects of 

model  building  and  antibody  design  process,  and  evaluates  the  design 

performance of RMSD, Seqid and ddG. The results show that the RMSD values 



V  

of CDR1 and CDR3 are greater than 2Å; CDR2 is less than 1.5Å, reaching 

atomic accuracy. Only the diffab designed CDR2 sequence showed good 

agreement, numerically over 30%.0.0067% of the CDR designed by diffab was 

less energetic than the natural antibody and 0.0233% of the CDR designed by 

AlphaPanda was lower than the natural antibody. The overall performance of the 

designed CDR is better in the above indicators. Based on the above data, this 

paper proposes improvement measures for the AI antibody design program, and 

puts forward new ideas and prospects for the future field of AI antibody design. 

Key words: Nanobodies; artificial intelligence; antibody design; performance 

evaluation 
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INTRODUCTION 

 

As a drug, antibody has the advantages of high specificity, uniform properties, and 

targeted preparation for specific targets. Its application prospect has attracted much 

attention in the treatment of various diseases, especially in the field of tumor therapy. 

At present, the antibodies used in the development of targeted drugs are mainly IgG1 

and IgG4. In drug development, antibody engineering modification is often needed, 

that is, from extending half-life, improving affinity, enhancing effector function, and 

reducing immunogenicity, so as to make them more suitable for fighting targets. With 

the deepening of antibody-drug coupling (ADC), antibody fragments (such as 

nanobodies) and bispecific antibodies (BsAb), there is a higher demand for antibodies 

in terms of affinity binding efficiency. 

Nanobodies first found in camels, shark serum, natural loss of light chain, small 

molecular weight, containing extended CDR 3 ring, and special FR2 amino acid 

residues and convex antigen binding site allows them to bind to the usually blocked 

concave antigen region, which targeting the traditional monoclonal antibody to the 

target, make drug action more specific and efficient. The CDR3 ring of nanobodies is 

long and more variable, able to bind diverse antigens. Structural variation in CDR 1 

and the expansion of CDR3 compensate for the loss of the light chain. FR2 of 

nanobodies is usually composed of hydrophilic amino acid residues, thus having good 

water solubility and high stability against high temperature, protease and pH changes. 

Moreover, nanobodies have better penetration and the ability to cross the BBB and 

even cross the damaged ones under neuropathological conditions. Considering these 

characteristics, nanobodies can be administered by alternative routes such as oral or 

intraperitoneal injection. The low immunogenicity of nanobodies makes them an ideal 

candidate for drug development [1]. Furthermore, diverse synthesis by humanization 
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and CDR randomization can further mitigate side effects. The structure of nanobodies 

is relatively simple and does not require common posttranslational modifications or 

complex eukaryotic expression systems and purification steps. Due to their small 

molecule and monomeric structures, nanobodies are well suited for multimerization, 

thus achieving multivalency, multiepitope, and multispecificity, which can increase 

affinity and bind multiple antigens. 

Nanobodies can be produced by conventional prokaryotic expression systems [2] (e. 

g.E.coli) and eukaryotic expression systems (e.g. Saccharomyces cerevisiae) or 

screened by natural libraries, immune libraries, synthetic libraries, etc. These 

advantages make nanobodies relatively inexpensive to produce, while having a 

broader range of antigen recognition than conventional monoclonal antibodies. 

Immune libraries were inoculated with target antigen such as alpaca or single, then 

purified lymphocytes from blood to extract for mRNA and then converted into cDNA. 

After amplification by PCR, the target sequences were screened by agarose gel 

electrophoresis. Finally, the VHH sequence was amplified using primers specific for 

the live restriction enzyme site to insert the obtained amplicon into the appropriate 

expression vector (usually E. coli or yeast). However, antibodies extracted in animals 

may cause immune responses in humans. Difficulties to obtain highly specific 

antibodies against rare or highly conserved antigens. 

With the continuous progress of the experimental technology, the development 

method is also constantly improving. Single-cell sequencing technology allows 

researchers to extract and analyze antibody genes from single B cells to directly access 

the precise sequence of antibodies. The application of this technology greatly reduces 

the time from antibody discovery to production and improves the development 

efficiency of antibody therapy. Using X-ray crystallography and cryo-electron 

microscopy techniques, researchers are now able to resolve the complex structure of 

antibodies and antigens at atomic-level resolution. This detailed structural information 
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enables structure-based antibody design, enhancing its binding affinity and specificity 

to a specific antigen by precisely modifying the structure of the antibody. Computer- 

aided design (CAD) technology, especially in protein modeling and simulation, 

provides a powerful tool for antibody design. By mimicking antibody-antigen 

interaction, researchers are able to predict antibody binding properties before 

laboratory manipulation, thus guiding antibody modification and optimization in the 

laboratory. Although these are high-throughput experimental methods, their flux is 

still insufficient relative to the sequence space of the antibodies. A combination of 

rational design to further reduce the screening space is needed to improve the success 

rate of antibody drug design [3,4]. 

With the continuous development of bioinformatics, computational biology and 

other fields, the field of antibody design has undergone revolutionary changes in 

recent years. Artificial intelligence technology is gradually applied to antibody design 

[5-7], which greatly improves the efficiency and success rate of antibody design and 

makes it possible to design antibodies ab initio, greatly improves the speed and 

accuracy of antibody discovery, and opens up a new way for the treatment of various 

diseases. 

In recent years, the continuously developing AI technology has opened up new 

directions in the field of antibody design. Machine learning as a branch of artificial 

intelligence, is not completely rely on programming instructions, but in the data 

learning to find out the law, and according to the new data and feedback quickly 

adjustment and optimization, effectively reduce the calculation, and have good 

generalization ability, to some extent, make up for the manual energy function cannot 

capture biological macromolecular covalent interaction and the defects of dynamic 

change. Commonused machine learning algorithms include support vector machine, 

random forest, neural network and so on. 
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Deep learning as a subset of machine learning, using the multilayer structure of the 

neural network model to simulate the human brain processing information of data 

training, deep learning algorithm has strong feature extraction ability, using the 

nonlinear activation function processing protein non-covalent interactions and 

dynamic changes and more complex biological data. A series of artificial intelligence- 

based bioinformatics platforms have been established, Such as AbDiver[8] can 

compare the designed antibody sequences to the natural antibodies in the antibody 

database, So as to guide the development of antibody drugs; TAP is a bioinformatics 

platform to assess the physicochemical properties of antibody drugs; Camsol[9] vs. The 

SOLart[10] can assess the solubility of the antibody; SOLart And AGGRESCAN 3D[11] 

can be used to assess the aggregation of antibodies; IEDB-AR [12] is a platform to 

predict and analyze antibody drug immune epitopes; Hu-mAb [13] can distinguish 

between human and non-human Fv fragments, But the above platforms can only be 

optimized for a small part of the antibody design process, The practical application 

effect is poor. In recent years, deep learning models such as diffab, PROSEED and 

RFdiffusion have targeted antibodies for specific antigens based on the secondary 

structure of antigen antibodies, which has greatly promoted the progress of 

computational antibodies. 

At present, the methods of artificial intelligence in antibody design mainly include: 

(1) antibody design methods based on machine learning: the application of machine 

learning algorithm in antibody design mainly includes antibody structure prediction, 

recognition of antigen binding site and antibody affinity optimization, etc. 

Commonused machine learning algorithms include support vector machine, random 

forest, neural network and so on (2) Antibody design method based on deep learning: 

Deep learning algorithm has strong feature extraction ability and can process complex 

biological data. In antibody design, deep learning algorithms are mainly used for 

antibody-based sequence-structure prediction, antigen-binding affinity prediction, and 
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antibody humanization. (3) Antibody design method based on the evolutionary 

algorithm: The evolutionary algorithm simulates the natural selection and genetic 

mechanism, and searches for the optimal solution in the antibody library through 

iterative optimization. The method has achieved good results in antibody affinity 

maturity and antibody humanization. 

The relevance of the topic is Nanoantibody design by artificial intelligence. 

The purpose of the study is to investigate the performance of AI nanobodies. 

The objectives of the study is to investigate the performance of AI nanobodies. 

The object of the study is to investigate performance evaluation of the AI-made 

nanobodies. 

The subject of the study is to investigate performance evaluation of the AI-made 

nanobodies. 

Research methods by experimental demonstration. 

The scientific novelty is data analysising after designing nanobodies with AI 

program. 

The practical significance of the results obtained is the stability of AI nanobodies 

is high, but the practical application ability needs to be improved. 
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CHAPTER 1 

LITERATURE REVIEW 

 

1.1 Artificial intelligence antibody design concept and development direction 

AI antibody design is the use of AI technology to assist and accelerate the 

discovery and design process of antibody drugs. Artificial intelligence antibody design 

mainly includes the following aspects: (1) data collection and analysis: collection of 

known antibody sequence and structural data, as well as antibody information for 

binding to specific antigens.(2) Antibody sequence design: the antibody sequence is 

optimized by the algorithm to enhance its binding ability with the target antigen, while 

maintaining good biological activity and stability.(3) Structure prediction and 

optimization: to predict the three-dimensional structure of the antibody, and to 

optimize the structure through computational methods to improve the affinity and 

efficacy of the antibody.(4) Wet laboratory validation: the antibody designed by AI is 

synthesized and tested in the laboratory to verify its binding activity and biological 

function. 

1.2 Antibody design model based on a deep learning model 

1.2.1 diffab model 

diffab in antibody design, it mainly includes sequence-structure co-design, 

antibody sequence design based on antibody skeleton and antibody optimization tasks 

[14]. It learns the complex relationship between antibody sequence and structure by 

training on datasets acquired in SAbDab[15] and other databases. During training, the 

model will ignore antibodies with a below 4Å resolution and antibodies against non- 

protein antigens to improve the accuracy and generalization ability of the model. An 

important feature of the diffab model is that it processes the dataset using a clustering 
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method to identify antibody groups with similar characteristics and to manually select 

partial clusters as the test set. This strategy is useful for evaluating the performance of 

the model on different types of antibody design tasks. When evaluating the 

performance of diffab models, indicators such as amino acid recovery rate (AAR), C α 

root mean square deviation (RMSD), and binding energy (G) are usually used. These 

indicators enable a comprehensive assessment of the performance of the designed 

antibodies in terms of structure, stability, and affinity. Compared to the 

RosettaAntibodyDesign (RAbD) model [16], the diffab model performs better in AAR 

and is comparable to RAbD in RMSD and G, showing its competitiveness and 

potential in the field of antibody design. The diffab model similarly enables antibody 

design in the absence of a known antibody framework for binding to the antigen. An 

antibody-antigen complex was generated by removing an existing CDR-H3 and 

docking the antibody template to the target antigen using HDOCK [17]. 

1.2.2 PROSEED model 

PROSEED is a model [18] of co-design for sequence and structure based on context 

features. This model iteratively transforms the protein sequence and structure from 

random initialization to the expected state. This model includes a triangle-aware 

encoder that explains geometric constraints and interactions from context features and 

a rotary transition isvariant decoder that interdependently translated protein sequences 

and structures, iteratively converting proteins into desired states in an end-to-end and 

equivariant manner. By predicting the structural update of the local frame based on the 

invariant representation, and then using the changing base operation, the equivariant 

properties of the protein structure during the whole process are guaranteed. It is worth 

mentioning that all protein amino acids are updated once in each translation step, 

which greatly accelerates the inference process. PROSEED Can update the sequence 

and structure of all residues at once, thus enabling a more efficient inference process. 
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Unlike the previous approach of structuring and then generating sequence and rotating 

isoers, we allow the model to cross-condition the sequence and structure, with the 

maximum information flow between context features, sequence and structure, thus 

ensuring the fidelity of the generated proteins. We performed extensive experiments 

on the Structural Antibody Database (SAbDab) and two protein design benchmark 

datasets curated from CATH [19], and compared PROSEED with previous state-of-the- 

art methods in three modules: antigen-specific antibody CDR design, context- 

conditional protein design, and fixed backbone protein design.The data show that this 

model can generate high-fidelity proteins in sequence and structure, while being 

several orders of magnitude faster than sampling-based methods. 

1.2.3 RFdiffusion Model 

RFdiffusion[20] Is a model designed by the David Baker team based on the 

Generative Adversarial Network (GAN) [21]. GAN trains a generative model to 

generate new data that are almost indistinguishable from real data, while training 

discriminant models to distinguish between real data and generated data. RFdiffusion 

On the basis of protein folding model Rose TTAFold based on the structure of 

denoising fine tuning, through adding three-dimensional Gaussian noise and simulated 

Brownian motion in protein structure add translation, rotating noise, training model in 

reverse noise reduction to minimize the prediction and the real structure, mean 

variance can in random initialization structure by denoising new protein backbone 

structure , in the protein monomer design, protein binding agent design, symmetrical 

oligomers design and metal binding protein design achieved excellent performance. 

The cryo-EM structure of the designed binder bound to influenza hemagglutinin was 

almost identical to the designed model, confirming the accuracy of RFdiffusion. 

RFdiffusion Make it possible to design simple molecules to design diverse functional 

proteins, bringing new possibilities to the field of protein design. 
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1.2.4 AlphaPanda model 

AlphaPanda [22] is an antibody design model independently developed by our team, 

inspired by AlphaFold2, integrating Transformer model and 3DCNN model. This 

model uses the Transformer model to capture global information, capture the local 

structural features of the antibody-antigen complex, and then the diffusion model to 

generate the sequence and structure of the antibody. While considering protein overall 

and local information, consider the pair and non-pair contacts, avoiding the defects of 

the generation process of the autoregressive model and self-consistent iterative model. 

AlphaPanda Has the common advantages of other advanced protein or antibody design 

software. It uses the isovariable neural network to process the coordinates in the 3D 

space and explicitly consider the antigenic structure, realizing the simultaneous 

diffusion generation of the sequence and structure of the CDR region. Transformer 

Model usually require large amounts of data to obtain considerable results, which is 

not necessary for CNN models, and introducing CNN to learn antibody structure 

effectively reduces the operation. Combining the above advantages, AlphaPanda 

achieves good performance and can be applied not only in antibody design, but also 

more widely in various fields of other protein design. 

1.3 Application of the deep learning model 

Deep learning is a learning method based on artificial neural networks to identify 

complex patterns and data by mimicking the processing of the human brain. In the 

field of antibody design, deep learning is able to process and analyze large 

bioinformatic datasets, including protein sequence, structural and functional data, thus 

identifying key parameters of antibody design. Using deep learning models predicts 

the effect of antibody variation on its affinity and specificity, thus guiding more 

effective design of antibody sequences. Deep learning models have unique advantages 
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in antibody structure prediction, antigen-antibody binding affinity prediction, antigen- 

antibody interaction site prediction, and antibody sequence design. 

Conclusions to chapter 1 

1. AI can assist in antibody design. 

2. Artificial intelligence has broad prospects in the field of antibody 

design. 
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CHAPTER 2 

OBJECT, PURPOSE, AND METHODS OF THE STUDY 

2.1 Object 

Design of a new CDR using AI software. 

 

2.2 Purpose 

AI software design to design new antibody CDR after learning antibodies in the 

PDB database. 

2.3 Methods of the study 

2.3.1 Different application approaches for deep learning software 

1、Antibody structure prediction of deep learning models 

 

Antibody structure prediction is a key step in antibody design, and deep learning 

models achieve remarkable results in this regard.The main methods include: 

Prediction method based on convolutional neural network (CNN): Convolutional 

neural network has been widely used in the fields of image classification, object 

detection and semantic segmentation. Convolutional neural network is essentially 

using a simple activation function to fit to a complex function between the network 

layers, which is something in a pure digital sense. With the advent of the information 

age with the progress of The Times and the explosion of big data, the convolutional 

neural network also faces great challenges and opportunities. In fact, more and more 

scenes can be adapted to the convolutional neural network. CNN has advantages in the 

field of image processing and can extract local features in the antibody structure. The 

researchers use CNN to predict the structure by transforming the 3D structure of the 

antibody into the image form.(2) Prediction of the antibody structure. By representing 
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the antibody structure as a graph, the GNN is used to learn relationships between 

nodes and thus improve prediction accuracy. 

 

 

2 、Antigen-antibody affinity prediction of the deep learning model 

 

Antigen-antibody binding affinity is an important indicator to evaluate antibody 

performance. The deep learning model has the following methods for affinity 

prediction: (1) Method based on convolutional neural network: Using CNN for affinity 

prediction by extracting local features of antigen and antibody binding regions.(2) 

Method based on recurrent neural network: the sequence information of antigen and 

antibody is encoded, and the RNN is used to learn the correlation between sequences, 

so as to predict the affinity.(3) Methods based on the attention mechanism: The 

attention mechanism can enable the model to focus on the key areas of antigen- 

antibody binding and improve the accuracy of affinity prediction. 

3 、Antigenic antibody interaction site prediction 

 

The binding properties between the protein molecules can be affected by their 

neighboring residues. The traditional sliding window strategy simply directly splicing 

the feature vectors of the target residues and adjacent residues as input to the 

prediction model, and does not distinguish the effects of adjacent residues at different 

positions, so the trained model cannot achieve the desired expected performance. In 

order to solve the above problems, Lu Shuai et al. proposed a new sequence feature 

representation method (SW-ATT) [23]. Combining SW-ATT with convolutional neural 

networks creates a method called SW-ATTCNN residue attribute prediction, which 

first updates the feature expression of the input sequence using a sliding window 

strategy integrated into the attention mechanism. Then, the convolutional neural 
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network (CNN) is used to extract the deep features of the local environment of the 

target residues. Finally, the classification prediction of residue properties is realized 

with the help of a fully connected neural network. 

4 、Antibody sequence design of the deep learning model 

 

Antibody sequence design is the core task of antibody engineering. The research of 

deep learning model in this aspect mainly includes: (1) method based on generating 

antagonistic network (GAN): GAN generates antibody sequences with specific 

functions by learning the distribution of antibody sequences.(2) Method based on the 

variational autoencoder (VAE): the VAE encodes the antibody sequence into a low- 

dimensional vector, and the new antibody sequence is generated through the 

decoder.(3) Methods based on reinforcement learning: Reinforcement learning 

optimizes the generation process of antibody sequence to make the generated 

antibodies have better performance. 

 

2.3.2 Operation of the AI antibody design program 

Artificial intelligence is the research and development can simulate, extend and 

extend the human intelligence theory, method, technology and application system of a 

new technology science, its itself is a comprehensive frontier and highly cross 

interdisciplinary disciplines, research, investigate the category wide and extremely 

complex, its development needs and computer science, mathematics, cognitive 

science, neuroscience and social science discipline depth fusion. With the 

improvement of experimental biology and artificial intelligence computing 

capabilities, the interdisciplinary discipline of computational biology has flourished, 

making it possible to turn biological mechanisms into computational models. 

Machine learning is the core of artificial intelligence technology by studying how 

computers simulate or realize human learning behavior to acquire new knowledge or 
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skills, reorganize the existing knowledge structure and continuously improve their 

own performance. Data-based machine learning is one of the important methods in 

modern intelligent technology. It studies finding laws from the observed data 

(samples), and uses these laws to predict the future data or unobservable data. 

The AI antibody design program is based on different machine learning models, 

and the antibody data in the antibody library is learned to assist and accelerate the 

design process of antibody molecules. As a subset of machine learning, deep learning 

mainly uses neural networks to learn the data. By learning the internal laws and 

representation levels of sample data, the machine can have the ability to analyze and 

learn like a human, and can recognize data such as text, image and sound. Through 

multi-layer processing, the initial "low-level" feature representation is gradually 

transformed into the "high-level" feature representation, and the learning tasks such as 

complex classification can be completed with the "simple model". Compared to 

traditional machine learning methods, deep learning models do not require manual 

feature extraction, and they can automatically learn from useful features as well as 

hierarchical structures in the raw data. 

Based on deep learning, there are many different types of design models, such as 

diffusion model, autoregressive model, etc. The common ground of such models is all 

based on the common design of structural sequence of the secondary structure during 

the interaction of antigen antibodies to generate antibodies specifically against a 

specific antigen structure. 

 

 

2.3.3 The AI antibody design model 

1、Diffusion model 



22 

2 

 

 

 

 

 

The structure of protein is the basis of its function, and protein structure prediction 

is the core of antibody design. Accurate protein structure prediction models can 

predict not only amino acid positions but also amino acid orientation. The orientation 

of amino acids determines the orientation of their side chain extension and is therefore 

essential for the reconstruction of the all-atom structure. 

In the process of protein structure prediction, the deep learning model takes protein 

sequence and multiple sequence alignment (MSAs) as input, and transforms it into 3 D 

structure [24,25,26]. 

During training, a noise plan was used to break the protein frame on a certain 

number of "time steps" (T) to a distribution that is indistinguishable from a random 

distribution (C ɑ coordinates are destroyed by three-dimensional Gaussian noise and 

destroyed by Brownian motion on so3). During training, a PDB structure and a 

random time step (t) are sampled, and the t-noise step is applied to the structure. Data 

were generated by denoising the samples with a prior distribution. 

Diffusion is divided into forward diffusion and backward diffusion. The forward 

diffusion process gradually adds noise to the data until the data distribution 

approximately reaches the prior distribution. The generative diffusion process starts 

with the prior distribution and iteratively transforms it into the desired distribution. An 

iterative perturbative denoising scheme has been empirically formulated for learning 

and generating amino acid orientations represented by SO (3) elements. The ward 

diffusion is the inference process of denoising. 

Finally, a neural network is used to parameterize the multilayer perceptron (MLPs) 

to generate single and paired amino acids. 

The dataset used to train the model was obtained from the SAbDab database. 

Structures with resolution below 4Å were first removed and antibodies against 
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nonprotein antigens were discarded. Then the sequence and structure co-design based 

on the CDR-H3 sequence with 50% sequence identity in the database. 

To optimize the antibody, the CDR sequence and structure were first perturbed 

using a forward diffusion process. Then, the sequence starting from the first step (Tt) 

(remaining t) of the generation diffusion process is denoised to obtain a set of 

optimized antibodies. 

2、Transformer model 

 

The Transformer model introduces the self-attention mechanism [27], and by its 

extensive use, the model is able to weigh the importance of different positions in the 

input sequence when generating the output. The model can simultaneously consider 

the contextual connections of all amino acids in the peptide chain, rather than 

processing them in context as in traditional recurrent neural networks (RNNs). The 

Transformer model is able to generate highly diverse antibody sequences, which 

improves through the advantages of self-attention mechanism and parallel computing, 

and improves the efficiency of training and inference of the model. Various variants of 

Transformer have been proposed based on Transformer models against the 

characteristics of different antibodies. TransPHLA[27] is a pan-specific method that can 

be applied to rare and invisible human leukocyte antigen alleles. The core idea of the 

TransPHLA model is to apply self-attention to construct and optimize the model, The 

model consists of four main submodules: (1) embedded blocks (including the coding 

of amino acids in the sequence and the position information of the sequence); (2) 

Encoder block (apply multiple self-attention to follow the different components of the 

sequence, And shield the filling position of the sequence to prevent misleading the 

model); (3) Feature optimization block (using the full connection layer of the gyro 

channel with the first rising and then descending, Processing the features obtained 
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from the previous self-attention block, To achieve a better feature representation); (4) 

Projection blocks (using multiple fully connected layers to predict the final binding 

fraction). TransPHLA Not only achieve better performance with higher efficiency, but 

also addresses the limitations of many methods for HLA alleles and variable length 

peptides. 

 

 

3、3DCNN model 

 

The 3DCNN model can capture pairwise interactions in antibody-antigen 

complexes, and unpaired interactions in antibody-antigen complexes, and requires less 

training sample data, while avoiding the defects of the autoregressive model and self- 

consistent iterative model on the generation process. However, the 3 DCNN method 

does not consider the global information and does not adopt an efficient generation 

method. 

2.3.4 Design the combination of the models 

The diffab model is based on the diffusion model, and the AlphaPanda model is 

combined with the diffusion model, the Transformer model, the 3DCNN model.These 

two models were used to learn antibodies in the PDB, each designing a new CDR. 

Conclusions to chapter 2 

1. Various design models are combined to form a model that can fully 

design antibodies. 

2. The AI antibody design model is CDR designed based on the 

amino acid structure. 
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CHAPTER 3 

EXPERIMENTAL PART 

3.1 Construction of the diffusion model —— takes the diffab model as an 

example 

The relationship between CDR sequences and the secondary structure of antigen 

antibody interactions and how to spatially distribute CDR of newly generated 

antibodies are key to antibody design. The model should be explicitly based on the 3 

D structure of the antigen and generate a CDR suitable for antigenic structures in 3D 

space. This is essential for the generalization of the model to new antigens. Second, 

the interactions between amino acids are mainly determined by side chains, atomic 

groups that extend from the protein backbone. Thus, the model should be able to 

consider both the amino acid position and orientation. Third, the model should 

continuously optimize antibodies to enhance their ability to bind to antigen in different 

environments. To address these questions, the diffab model jointly samples the 

antibody CDR sequences and structures, making the joint distribution of the CDR 

sequences and their structures directly dependent on the antigen structure.The CDR is 

first initialized with an arbitrary sequence, position, and orientation, and the diffusion 

model first aggregates information from the antigen and antibody frames.Then, the 

amino acid type, position and orientation of each amino acid on the cdr. In the final 

step, the model is based on the predicted orientation using the side chain filling 

algorithm at the atomic level. The diffab model is the first to propose the common 

design of the antibody sequence and structure through the three-dimensional structure 

of the antigen. While designing the protein sequence and coordinates, the design of 

amino acids has successfully achieved antibody design at atomic resolution. 

Traditional model calculation method is mainly based on sampling algorithm 

manual and statistical energy function and iterative modification of protein sequence 
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and structure, these methods are inefficient, and due to the rough energy environment, 

easy to fall into the local optimal state, base, in the sequence method although more 

effective, but only according to previously observed new antibodies, but it is difficult 

to produce antibodies for specific antigen structure. Deep learning methods generate 

protein sequences by using the language model and model the 3D structure of 

antigens, considering not only the backbone atomic coordinates but also the 

orientation of amino acids. 

 

3.2 Antibody design of diffusion model —— Example of diffab model 

3.2.1 Experimental objectives 

The CDR was designed by learning from diffab, using 8a67 from the PDB database 

as a template. 

 

3.2.2 Installation and startup of the design program 

Conda is an open source package management system and environment 

management system used to install different versions of software packages and their 

dependencies, and can easily switch between them. It works for Linux, OSX and 

Windows and is created for Python programs, but can be packaged and distributed 

with any software. 

The diffab program in this experiment was used in a conda system-based Linux 

environment. 

FinalShell Is an SSH client tool with multi-platform support for Windows, Mac OS 

X, and Linux. Mainly used for all-in-one server management. 

Start diffab with conda in finalshell.Figure 3-1 The diffab of the program was 

initiated 
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Figure 3.1 – Start the diffab environment 

 

 

3.2.3 Antibody design and analysis 

1、Conduct the antibody design, and the input: 

 

python design_pdb.py /home/data/t030413/diffab-origin/diffab- 

main/8a67/8a67.pdb --heavy H --light L --config ./configs/test/codesign_single06.yml 

-d cpu 

 

2、Analyze the design structure and input: 

Python design_eval_single.py--root=/home/data/t030413/diffab-origin/diffab- 

main/results/codesign_single06/7xjf.pdb_2023_10_08 10_37_06 --pfx='‘ 

3.3 Antibody design of diffusion model —— Example of AlphaPanda model 

3.3.1Experimental target 

Using 8a67 in the PDB database as a template, let AlphaPanda learn from it and 

design a new CDR. 

3.3.2Installation and startup of the design program 

The software and procedures used for antibody design and analysis are the same as 

diffab. 
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3.4 Design antibody performance analysis 

3.4.1 Main evaluation indicators 

1、 RMSD:RMSD is the root mean square squared difference of C α between the 

generated CDR and the antibody real CDR. In the protein structure analysis, and 

molecular dynamics simulations, the RMSD value is used to measure the extent of the 

deviation of each part from the average position, that is, the magnitude of the motion 

of each atom. The lower RMSD represented less differences compared to the native 

CDR, suggesting a better CDR structure to bind antigen. The threshold value of 

RMSD is usually limited within a certain range to determine the similarity of the 

structure, the value of RMSD is usually 1-2Å. When the RMSD is less than or equal to 

1A, the two structures are considered to be very similar; when the RMSD is greater 

than 2Å, the two structures are considered to be quite different, and the protein of 

about 1.5Å can reach the atomic accuracy. 

2 、Seqid: Seqid usually represents sequence similarity, namely the degree of 

similarity between two protein sequences, which is usually expressed in percentage 

form. It measures the proportion of identical amino acid residues in two sequences. 

Higher sequence similarity means that the two sequences may be more structurally 

and functionally similar because they share more amino acid residues. The higher 

Seqid values indicate that the designed antibody sequence shows a high similarity to 

the target sequence. It is generally believed that designed antibodies with Seqid values 

around 30% have good homology with the native structure. 

3、ddG:The ddG is the difference between the energy of the designed antibody 

(dG-gen) and the natural antibody energy (dG-ref). The smaller the dG value, the more 

stable the antibody is. 

3.4.2 CDR designed by diffab model 
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100 CDR 1,100 CDR 2 and 100 CDR 3 were designed by diffab, and the CDR with 

the lowest RMSD was selected as a representative to map their 3 D structure. 

Table 3.1 –The three CDRs designed by diffab 
 

CDR filename rmsd seqid dG_gen dG_ref ddG 

H_CDR1 0053.pdb 2.96743 7.692308 2570.3850 1532.00403 1038.38098 

H_CDR2 0088.pdb 0.22689 40 1537.231079 1531.873535 5.357544 

H_CDR3 0045.pdb 2.477394 23.529412 4116.40332 1532.004028 2584.399292 

 

 

Figure 3.2 – The graphic model of 8a67 
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Figure 3.3 – CDR1 0053 
 

 

 

Figure 3.4 – CDR2 0088 
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Figure 3.5 – CDR3 0045 

 

 

Figure 3.6 – three CDRs designed by diffab 
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Figure 3.7 – diffab The three CDRs designed 

 

3.4.3 CDR designed by AlphaPanda model 

200 CDR 1,200 CDR 2 and 200 CDR 3 were designed by AlphaPanda, and the 

CDR with the lowest RMSD was selected as the representative to map their 3 D 

structure. 

 

 

Table 3.2–The three CDRs designed by AlphaPanda 
 

CDR filename RMSD Seqid dG_gen dG_ref ddG 

H_CDR1 0124.pdb 2.601117 7.692308 4083.1604 1531.873535 2551.286865 

H_CDR2 0123.pdb 0.662668 0 1824.910278 1531.970581 292.939697 

H_CDR3 0107.pdb 3.960965 20 11081.05469 1531.605957 9549.44873 
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Figure 3.8 – AlphaPanda Design of the H_CDR1 0124 
 

 

 

Figure 3.9 – AlphaPanda Design of the H_CDR2 0123 
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Figure 3.10 – AlphaPanda Design of the H_CDR3 0107 
 

 

 

Figure 3.11 – AlphaPanda The three CDRs designed 
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Table 3.3–diffab and AlphaPanda designed the antibodies 
 

Group statistics   Independent samples' t-test 

  

 

group 

 

The 

number 

of cases 

 

average 

value 

 

standard 

deviation 

 

 

F 

 

conspi 

cuousn 

ess 

 

free 

degree 

 

The sig 

(double- 

tailed) 

RMSD 

 

(CDR1) 

diffab 100 3.479473 0.199845     

    1.768 0.185 298 0 

AlphaPanda 200 3.096392 0.2112423     

RMSD 

 

(CDR2) 

diffab 100 0.597853 0.1971638 
    

    11.106 0.001 285.5 0 

AlphaPanda 200 1.225389 0.3205259     

RMSD 

 

(CDR3) 

diffab 100 5.365680 1.780742131 
    

    4.917 0.027 153.752 0 

AlphaPanda 200 6.594885 1.304545138     

Seqid 

 

(CDR1) 

diffab 100 15.033722 10.65926507 
    

    172.363 0 119.21 0 

AlphaPanda 200 8.899085 4.768450991     

Seqid 

 

(CDR2) 

diffab 100 35.873016 9.561413591 
    

    21.36 0 247.986 0 

AlphaPanda 200 24.706349 12.38648082     

Seqid 

 

(CDR3) 

diffab 100 20.397758 8.754151246 
    

    6.917 0.009 161.433 0.222 

AlphaPanda 200 19.170635 6.853498616     

ddG 

 

(CDR1) 

diffab 100 931.263474 557.2611156 
    

    38.468 0 294.998 0 

AlphaPanda 200 3462.876782 1007.219385     

ddG diffab 100 166.638082 288.0456505 2.054 0.153 298 0.469 
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(CDR2) AlphaPanda 200 195.055208 334.6308831    

ddG 

 

(CDR3) 

diffab 100 8311.244534 4184.65 
   

   0.228 0.633 298 0 

AlphaPanda 200 12502.66387 3981.934659    

 

3.5 diffab Design performance comparison with AlphaPanda 

From the data available in Table 3-3: 

 

1. RMSD metric: 

 

(1) CDR 1: The mean (3.479) was higher than the mean of AlphaPanda (3.096). 

Independent sample t-test showed significant difference between diffab and 

AlphaPanda (P <0.05). t> 0 indicates that the RMSD value of diffab was generally 

greater than AlphaPanda, that is, the structural similarity of CDR 1 designed by diffab 

was slightly lower than that of CDR 1 designed by AlphaPanda. 

(2) CDR 2: The mean (0.598) of diffab group was higher than that of AlphaPanda 

group (1.225). Independent sample t-test showed significant difference between group 

and AlphaPanda group diffab (P <0.05). <0 of t indicates that the RMSD value of 

diffab was generally less than AlphaPanda, meaning the structural similarity of CDR 2 

designed by diffab was slightly higher than CDR 2 designed by AlphaPanda. 

(3) The value of CDR 3: the mean (5.366) of diffab group was higher than the 

mean of AlphaPanda group (6.595). Independent sample t-test showed a significant 

difference between diffab group and AlphaPanda group (P <0.05). The t <0 indicated 

that the RMSD value of diffab was generally less than AlphaPanda, and the structural 

similarity of CDR 3 designed by diffab was slightly higher than the CDR 3 designed 

by AlphaPanda. 

2. Seqid metric: 
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(1) CDR 1: the mean of the diffab group (15.034) is lower than the mean of the 

AlphaPanda group (8.899), The results of the independent samples t-test showed that, 

A significant difference between the diffab and AlphaPanda groups (P <0.05), The t> 

0 indicates that the Seqid value of diffab is overall greater than the AlphaPanda, That 

is, the sequence similarity of CDR 1 designed by diffab is higher than that of CDR 1 

designed by AlphaPanda, However, the mean value of both groups was less than 30%, 

Therefore, the design of both models of CDR 1 is unsatisfactory in terms of sequence 

similarity. 

(2) CDR 2: the mean value of the diffab group (35.87) is higher than the mean 

value of the AlphaPanda group (24.706), The results of the independent samples t-test 

showed that, A significant difference between the diffab and AlphaPanda groups (P 

<0.05), The t> 0 indicates that the Seqid value of diffab is overall greater than the 

AlphaPanda, That ely, the CDR 2 sequence similarity designed by diffab is higher 

than the CDR 2 designed by AlphaPanda, The diffab group had a mean value above 

30%, The AlphaPanda group approached 30%, diffab A high level of design in the 

sequence similarity of CDR 2. 

(3) CDR 3: the mean value (20.398) is higher than the mean value of the 

AlphaPanda group (19.171), The results of the independent samples t-test showed that, 

There was no significant difference between the diffab and AlphaPanda groups (P> 

0.05), The t> 0 indicates that the Seqid value of diffab is overall greater than the 

AlphaPanda, Namely, the CDR 3 sequence designed by diffab is more similar than the 

CDR 3 designed by AlphaPanda, However, the mean value of both groups was less 

than 30%, Design results showed little difference between the two groups. 



38 

3 

 

 

 

 

 

3. ddG metric: 

 

(1) CDR 1: diffab 3 (931.263) was lower than the mean of AlphaPanda group 

(3462.877). Independent sample t-test showed significant difference between diffab 

and AlphaPanda group (P <0.05), t <0 indicates that ddG value of diffab is less than 

AlphaPanda, or CDR 1 designed by diffab is more stable than CDR 1 designed by 

AlphaPanda. 

(2) The mean value of CDR 2: diffab group (166.638) was lower than the mean 

value of AlphaPanda group (195.005). The independent sample t-test showed that 

there was no significant difference between diffab group and AlphaPanda group (P> 

0.05). The value of t. <0 indicates that the dG value of diffab is generally less than 

AlphaPanda, that is, the CDR 2 designed by diffab is slightly more stable than the 

CDR 2 designed by AlphaPanda, but the difference was not obvious. 

(3) The mean of CDR 3: diffab group (8311.246) is lower than the mean of 

AlphaPanda group (12502.664). Independent sample t-test showed significant 

difference between diffab group and AlphaPanda group (P <0.05), t <0 indicates that 

the ddG value of diffab is less than AlphaPanda, that CDR 3 designed by diffab is 

more stable than CDR 3 designed by AlphaPanda. 

Conclusions to chapter 3 

1. Based on the above analysis, based on the performance of RMSD, 

seqid and ddG, it can be preliminarily inferred that the CDR designed by 

diffab is generally better on these indicators. In terms of RMSD, the average 

RMSD of CDR 1 and CDR3 designed by diffab and AlphaPanda is higher 

than 1.5Å, and the RMSD of CDR 2 is lower than 1.5Å. Therefore, both 

models need improvement for CDR 1 and CDR 3. In terms of Seqid, the 

Seqid value of CDR 2 designed by the diffab group only reaches 30%, so 
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there is much room for improvement in both models for sequence 

consistency. In terms of energy, for CDR 1 and CDR 3, the diffab group had 

significantly lower mean CDR; for CDR 2, the mean value and the 

difference was not significant, only 0.0067% CDR in diffab group was lower 

than the natural CDR, and only 0.0233% CDR in AlphaPanda group was 

lower than the natural CDR. 
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CONCLUSIONS 

 

The ability of AI models to predict their 3D structure based on known protein 

sequences is essential for understanding how antibodies bind to their specific antigen. 

By analyzing a large amount of antibody-antigen interaction data, neural networks can 

discover design principles that improve antibody affinity. AI technology is able to 

quickly analyze and process large amounts of data, significantly shortening the cycle 

of antibody discovery and design. AI can not only optimize the existing antibody 

design, but also discover new design concepts and goals, and expand the boundaries of 

research. 

The antibodies designed by AI can develop new treatment options for disease 

targets that are difficult to overcome by traditional methods, providing new hope for 

the treatment of difficult diseases. The application of AI technology in antibody design 

also heralds the transformation of pharmaceutical research and development mode. In 

the future, the design and development of antibodies may no longer rely on large 

laboratory facilities and complicated experimental processes, but rather proceed 

quickly and effectively on the basis of computer simulation and prediction. This will 

not only significantly reduce the cost of research and development, but also accelerate 

the marketing process of new drugs to better meet the treatment needs of patients 

worldwide. 

How the utility and practicability of antibody design using artificial intelligence 

program is an important problem in the field of antibody drug design. Through 

performance evaluation, the bottleneck and deficiency of the program can be 

identified, so as to carry out targeted improvement and optimization. By comparing 

the performance of different design programs, we can understand the effect of AI in 

biological applications and develop corresponding optimization strategies. 



41 

4 

 

 

 

 

 

The high stability of nanoantibodies designed by diffab enables the model to 

complete a wide range of antibody design tasks and can achieve competitive 

performance. AlphaPanda The combination of models effectively reduces the amount 

of operation, and shows superior performance in the design of CDR 2. There is room 

for improvement in the design of the two groups of models in the design of CDR, 

especially in improving sequence consistency and reducing RMSD value. At the same 

time, the advantages and disadvantages of the design also need to be combined with 

practical application scenarios and cost-effectiveness and other factors. The main 

limitations of antibodies are that the design of new antibodies relies on secondary 

structures bound to the target antigen, and it is unclear whether the antibodies 

produced can be produced in wet laboratories and actually bind to the target, and more 

effort is needed to design a biologically effective antibody. In the future, with the high 

throughput of protein production and test method development of protein design 

application scenarios will continue to expand, for example, under the cell-free protein 

synthesis technology will have stronger controllability, lower economic and time cost, 

higher safety [28,29], greatly accelerated design, synthesis, inspection, analysis of 

optimization process, make the protein design project to rapid advance. In addition, 

the training of AI models requires a large amount of accurately labeled high-quality 

data, but in the field of molecular biology, such data is expensive and scarce, which is 

the main "bottleneck" that limits the application of protein design. How to develop 

new high-throughput detection methods, how to optimize and develop new design 

models, and how to design new antibodies from scratch according to the physical 

information of antibodies are all the problems to be solved. 
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