
215 

Секція 7. Інформаційні технології 

 

Bober D.O., student of Kyiv National University  

of Technologies and Design  

(Language and scientific supervisor – Vyshnevska M.O.,  

associate professor of Kyiv National University  

of Technologies and Design) 

 

THE USE OF COMPILED PROGRAMMING LANGUAGES  

FOR INCREASING PROFITS 

The escalating concern surrounding the energy consumption of software 

applications exhibits a growing trend on an annual basis. This concern assumes 

even greater significance in the context of mobile and embedded devices, where 

the limited battery life imposes substantial constraints. However, it is imperative 

to underscore that the implications of elevated energy consumption extend 

beyond the mere requirement for increased recharging cycles. They also 

encompass a commensurate upsurge in electricity expenditures. Furthermore, it 

is crucial to acknowledge the finite nature of electricity as a resource, suggesting 

the potential for its depletion over time. Hence, the overarching reduction in 

energy consumption holds promise for long-term benefits across a broader 

spectrum. The pivotal inquiry pertains to the determinants governing the 

quantum of energy consumed by an application. 

Numerous factors contribute to the calculation of an applicationʼs energy 

consumption. Nevertheless, this study restricts its focus to a specific 

determinant: the programming language employed in the application's 

development. Diverse programming languages exist, characterized by their 

general-purpose or specialized nature, their alignment with declarative or 

imperative paradigms, and, notably pertinent to this investigation, their 

classification as either interpreted or compiled languages. Interpreted languages, 

by their very nature, necessitate an intermediary translation process, as they are 

not amenable to direct comprehension by the computer. Consequently, this 

translation process becomes a recurring necessity each time an application is 

initiated, thereby imposing an incremental computational burden. It is pertinent 

to highlight that interpreters often operate without foreknowledge of the precise 

data with which they will engage, necessitating preparatory measures to 

accommodate a wide range of potential scenarios proactively. 

Interpreted languages frequently manifest less verbose syntax, facilitating 

rapid code development and expediting idea iteration for developers. However, 

this very attribute renders it challenging for the interpreter to predict and prepare 

for the actions executed by the code. Compiled languages, in contrast, pursue 

different objectives. Rather than placing the interpretive burden on the machine 

executing the application, compiled languages eliminate this intermediary step, 

translating the code into machine language before it leaves the developerʼs 

environment. This approach obviates the overhead that an interpreter typically 



216 

imposes. Furthermore, compiled languages optimize the code during translation, 

thereby reducing the computational workload of the machine executing the 

application. However, it is imperative to recognize that the code authored in 

compiled languages tends to be more verbose and syntax-intensive. 

Compiled languages necessitate prior knowledge of the data types to 

provide optimization, and while certain modern compiled languages can 

autonomously infer data types to some extent, such inference is not infallible. In 

such instances, developers are required to manually specify data types, which 

can render code composition and refactoring more arduous. Nevertheless, 

applications written in compiled languages consistently exhibit significantly 

higher performance compared to those in interpreted languages. The 

performance differential may range from a fewfold to several orders of 

magnitude, where compiled code demonstrates superior execution speed. 

It is imperative to acknowledge that the emphasis in this discourse has 

centered on speed, even though the primary focus of this paper remains energy 

consumption. This emphasis arises from the proven correlation between code 

execution speed and energy efficiency, where faster code generally entails lower 

energy consumption. However, it is notable that interpreted languages currently 

enjoy greater popularity, leading to a proliferation of power-intensive 

applications in the market. As previously emphasized, electricity is a finite and 

costly resource. While the pursuit of profits is evident, it is plausible to achieve 

higher profits with more energy-efficient practices. However, this does not 

necessarily entail an immediate and wholesale transition to compiled languages, 

given the inherent challenges and potential developmental barriers. 

A pragmatic proposal emerges from this analysis: gradual transition. 

Particularly in cases where an application has achieved a substantial degree of 

completion, the phased substitution of components with alternative 

programming languages holds the potential to significantly ameliorate energy 

consumption, particularly in scenarios characterized by computationally 

intensive workloads. This approach can be implemented with minimal 

disruption to the development process, requiring a measured adjustment on the 

part of developers. 

 

References: 

1. Georgiou S., Kechagia M., & Spinellis D. Analyzing programming 

languages' energy consumption: An empirical study. In Proceedings of the 21st 

Pan-Hellenic Conference on Informatics. 2017. P. 1–6. 

2. Keijzers S., van Eekelen M. C., & van Gastel B. Energy Consumption 

Analysis of Practical Programming Languages. Radboud University Nijmegen, 

Master Thesis. 2014. 

3. Pereira R., Couto M., Ribeiro F., Rua R., Cunha J., Fernandes J. P., & 

Saraiva J. Energy efficiency across programming languages: how do energy, 

time, and memory relate? In Proceedings of the 10th ACM SIGPLAN 

international conference on software language engineering. 2017. P. 256–267. 



217 

4. Pereira R., Couto M., Ribeiro F., Rua R., Cunha J., Fernandes J. P., & 
Saraiva J. Ranking programming languages by energy efficiency. Science of 
Computer Programming. 2021. 205, 102609. 

 
Danylov A.D., student of Kyiv National University  
of Technologies and Design  
(Language and scientific supervisor – Vyshnevska M.O.,  
associate professor of Kyiv National University  
of Technologies and Design) 
 

ETHICAL PROBLEMS OF USING ARTIFICIAL INTELLIGENCE  

AND WAYS TO SOLVE THEM 
In recent years, artificial intelligence has become an integral part of our 

lives. Some people use it for entertainment, while others outsource some of their 
work to it. But as AI has become increasingly popular, it has become clear that 
this technology has certain ethical issues. They arise from the fact that AI is not 
able to independently evaluate the data it operates with. There are no moral or 
legal constraints that prevent it from doing so. Identifying and overcoming such 
ethical issues will make it possible to introduce AI-based technologies in various 
fields without the threat of violating legal or ethical norms.  

One of the main ethical issues is data privacy. AI has the potential to 
significantly interfere with peopleʼs privacy due to its ability to process and analyse 
large amounts of personal data. This can lead to violations of privacy and 
confidentiality rights. Peopleʼs data could end up in the hands of criminals, which 
would cause very serious harm to users. Or this data can be obtained by advertising 
agencies, even without the usersʼ knowledge, without breaking any law. 

Another issue is bias and discrimination. AI can learn from existing data that 
may contain biases. For example, if AI is used to hire staff and is trained on exis- 
ting hiring data that has a gender or racial bias, the AI may continue this practice. 

There is also the issue of AI using copyrighted data. When training large 
AI models, such as GPT-4 or DALL-E 3, large amounts of data are used that are 
not checked for possible copyright protection. This leads to the fact that people 
get free access to use such data due to the lack of laws for this case. 

Another important issue is determining liability for the harm that AI can 
cause. For example, if a person is injured while using AI to perform a complex 
medical operation, someone must be held accountable for this. But it will be 
almost impossible to identify those responsible in this case at the moment. 
Likewise, if someone uses AI to break the law, it will be difficult to determine 
who should be punished: only the person who broke the law or also the company 
that developed the AI. 

Another important issue is the replacement of humans with AI. It can be 
much cheaper for large companies to develop and train one AI-powered system 
than to hire a whole staff. This will lead to a sharp increase in unemployment 
and poverty. AI will take over almost all positions, and in the meantime, people 
will not be able to get a job anywhere. 


