УДК 541.127; 547.21; 546.226-325; 546.881.5

ВПЛИВ КИСЛОТНОСТІ СЕРЕДОВИЩА НА ШВИДКІСТЬ РЕАКЦІЙ ВУГЛЕВОДНІВ В СІРЧАНОКИСЛИХ РОЗЧИНАХ ЕЛЕКТРОФІЛІВ

Волкова Л.К.1, Опейда Й.А.2

¹Інститут Фізико-Органічної Хімії і Вуглехімії ім. Л.М.Литвиненка НАН України, Відділ хімії вугілля, м. Київ, Україна, e-mail: volkovalk@gmail.com

В сірчанокислотних розчинах метаванадієвої кислоти HVO3 при 60 °C кінетичним розподільчим методом вивчено реакції насичених вуглеводнів (RH). Для системи HVO3–H2SO4 на прикладі 2,3-диметилбутану показано, що в інтервалі концентрацій (84–90) % H2SO4 константи швидкості (k) зростають ~ в 60 разів і виходять на плато при 92 % H2SO4. Кислотно-каталітичний характер реакцій вуглеводнів в розчинах HVO3–H2SO4 порівняно з впливом середовища на такі реакції в сірчанокислих розчинах інших реагентів: 1-адамантанол; азотна кислота; комплекси хрому (6^+), ртуті (2^+), паладію (2^+), платини (3^+); формальдегід; пероксидисульфат амонію або пероксид водню; а також в розчинах самої сірчаної кислоти. Реакції RH в системах реагент — H2SO4 поділяються на дві групи відповідно до нахилу (m0) залежності в координатах lgk — M0 (функція кислотності Гаммета). В одній m0 ~ 1, в другій 1,3 m0 < 4, що визначається природою активної частинки, яка утворюється при взаємодії реагенту з сірчаною кислотою.

Ключові слова: вуглеводні, сірчана кислота, метаванадієва кислота, кислотний каталіз, функція кислотності, електрофіл

EFFECT OF MEDIUM ACIDITY ON THE RATE OF HYDROCARBONS REACTIONS IN THE SULFURIC ACID SOLUTIONS OF ELECTROPHILES

Volkova L.K. ¹, Opeida I.A. ²

¹ L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the NAS of Ukraine, Department of coal chemistry Kyiv, Ukraine, e-mail: volkovalk@gmail.com

In the sulfuric acid solutions of metavanadium acid HVO₃ at 60 °C the reactions of saturated hydrocarbons (RH) was studied by kinetic distribution method. For the system HVO₃–H₂SO₄ in the example of 2,3-dimethylbutane it is shown that in the concentration range (84-90) % H₂SO₄ the rate constants (k) increase ~ 60 times and reach the plateau at 92 % H₂SO₄. Acid-catalysis of hydrocarbons reactions in solutions HVO₃–H₂SO₄ compared with the influence of the medium in sulfuric acid solutions of other reagents: 1-adamantanol; nitric acid; chromium (6^+), mercury (2^+), palladium (2^+), platinum (3^+) complexes; formaldehyde; ammonium peroxydisulfate or hydrogen peroxide; as well as in solutions of the sulfuric acid. RH reactions in solutions of reagent – H₂SO₄ are divided into two groups according to the slope (m_0) of the dependence in the coordinates $lgk - H_0$ (acidity function of the Hammett). In one $m_0 \sim 1$, in the second 1,3 $\leq m_0 < 4$, which is determined by the nature of the active species formed by the interaction of the reagent with sulfuric acid.

Key words: hydrocarbons, sulfuric acid, metavanadium acid, acid catalysis, acidity function, electrophile

² Відділення Фізико-Хімії Горючих Копалин ІнФОВ НАН України ім. Л.М. Литвиненка НАН Украини, м. Львів, Україна, e-mail: opeida_i@i.ua

² Department of Physical Chemistry of Fossil Fuels L.M.Litvinenko InPOCC of the NAS of Ukraine, Lviv, Ukraine, e-mail: opeida i@i.ua

ВЛИЯНИЕ КИСЛОТНОСТИ СРЕДЫ НА СКОРОСТЬ РЕАКЦИЙ УГЛЕВОДОРОДОВ В СЕРНОКИСЛОТНЫХ РАСТВОРАХ ЭЛЕКТРОФИЛОВ

Волкова Л.К.1, Опейда Й.А.2

¹ Институт Физико-Органической Химии и Углехимии им. Л.М. Литвиненко НАН Украины, Отдел химии угля, г Киев, Украина, e-mail: volkovalk@gmail.com

Ключевые слова: углеводороды, серная кислота, метаванадиевая кислота, кислотный катализ, функции кислотности, электрофил

Соединения ванадия (+5) широко используются в каталитическом жидкофазном окислении насыщенных углеводородов (RH) пероксидом водорода [1-2], а также представлены в группе комплексов «металл оксо», ответственных за гидроксилирование связей С–Н [3], в гетерогенном катализе для селективного окисления алканов и других органических субстратов [4], в биохимических процессах [5] и в химической промышленности, например в многотоннажном производстве серной кислоты.

Ранее изучена активность сернокислотных растворов метаванадиевой кислоты (HVO₃) в окислении углеводородов ароматических (ArH) [6] и насыщенных, в основном циклоалканов (c-RH) и зависимость скорости реакций c-RH от температуры [7]. В [8] изучены изоалканы. Найдено [7-8], что при (30 – 90) °C в реакциях цикло- и изоалканов в растворах (0,6 – 6)·10⁻² моль·кг⁻¹ HVO₃ – 93 % H₂SO₄ кинетика описывается 1-м порядком по [RH]; эффективная жидкофазная константа скорости псевдопервого порядка (k_1) обратно пропорциональна исходной концентрации субстрата ([RH]₀) при [RH]₀ >1·10⁻⁵ моль· π ⁻¹ и не зависит от [RH]₀ в области [RH]₀ \leq 1·10⁻⁵ моль· π ⁻¹. При этом в конкурентном окислении R₁H и R₂H отношение их констант скорости не зависит от [R_iH]₀ во всей изученной области концентраций R_iH. Обратно пропорциональную зависимость k_1 от [RH]₀ можно объяснить снижением стационарной концентрации предполагаемой активной частицы тримера ванадия(+5), обозначим для краткости V₃O₂, при [RH]₀ >1·10⁻⁵ моль· π ⁻¹.

² Отделение Физико-Химии Горючих Ископаемых ИнФОУ им. Л.М. Литвиненко НАН Украины, г Львов, Украина, e-mail: opeida i@i.ua

В сернокислотных растворах метаванадиевой кислоты HVO3 при 60 ° С кинетическим распределительным методом изучены реакции насыщенных углеводородов (RH). Для системы HVO3-H2SO4 на примере 2,3-диметилбутана показано, что в интервале концентраций (84-90)% H2SO4 константы скорости (k) растут ~ в 60 раз и выходят на плато при 92% H2SO4. Кислотно-каталитический характер реакций углеводородов в растворах HVO3-H2SO4 по сравнению с влиянием среды на такие реакции в сернокислых растворах других реагентов: 1 адамантанол; азотная кислота, комплексы хрома (6^+), ртути (2^+), палладия (2^+), платины (3^+); формальдегид; пероксидисульфат аммония или пероксид водорода, а также в растворах самой серной кислоты. Реакции RH в системах реагент - H2SO4 делятся на две группы в соответствии с наклоном (m_0) зависимости в координатах lgk - H0 (функция кислотности Гаммета). В одной $m_0 \sim 1$, во второй 1,3 $\leq m_0 <$ 4, что определяется природой активной частицы, образуется при взаимодействии реагента с серной кислотой.

Цель исследования: Изучение влияния кислотности среды на кинетику реакций 2,3-диметилбутана в растворах $HVO_3 - H_2SO_4$ и сравнение их с реакциями углеводородов с другими реагентами в сернокислотных растворах и в самой серной кислоте для установления природы активной частицы – непосредственного реагента и механизма активации связи C-H.

Материалы и методы исследования.

Использовали реагенты квалификации "х.ч.": концентрированную серную кислоту и метаванадиевую кислоту; субстраты — хроматографически чистые RH. Растворы HVO_3 — H_2SO_4 готовили по методике [7, 8].

<u>Кинетические измерения и их обработка.</u> Кинетику реакций RH в растворах HVO₃ – H₂SO₄ изучали кинетическим распределительным методом (КРМ) Рудакова [9] с ГЖХ-контролем убыли RH в газовой фазе над раствором:

$$-(\mathbf{d}[\mathbf{RH}]_{G} / \mathbf{d}\tau) = k_{\lambda} \cdot [\mathbf{RH}]_{G}, \quad k_{1} = k_{\lambda} \cdot (1 + \alpha \cdot \lambda), \quad k = k_{1} / [\mathbf{HVO}_{3}]^{n}, \tag{1}$$

где k_{λ} — наблюдаемая константа скорости псевдопервого порядка; k_1 — жидкофазная константа скорости первого порядка; k — жидкофазная константа (n+1)-порядка; α = [RH] $_G$ / [RH] $_L$ — коэффициент равновесного распределения RH между газовой фазой (G) и сернокислотным раствором (L), который не зависит от концентрации в растворе метаванадиевой кислоты при [HVO $_3$] = $(0,6-7)\cdot10^{-2}$ моль·кг $^{-1}$; λ = V_G / V_L — отношение объемов двух фаз в закрытом термостатируемом реакторе, который интенсивно встряхивается, внутренний стандарт — метан. Значения константы k_{λ} находили по убыли [RH] (концентрации в газовой фазе) по уравнению:

$$\ln[RH] = -k_{\lambda} \cdot \tau + \text{const.} \tag{2}$$

Изучены реакции с двумя (или более) одновременно реагирующими RH (конкурентный вариант KPM), что позволяет определить отношение наблюдаемых констант $(k_{\lambda,\text{отн}})$ и далее отношение констант $k_{\text{R}_1\text{H}} / k_{\text{R}_2\text{H}}$:

$$k_{\lambda,\text{OTH}} = (k_{\lambda,\text{R}^1\text{H}} / k_{\lambda,\text{R}^2\text{H}}), k_{\text{OTH}} = (k_{\text{R}^1\text{H}} / k_{\text{R}^2\text{H}}) = [k_{\lambda,\text{R}^1\text{H}} \cdot (1 + \alpha_{\text{R}^1\text{H}} \cdot \lambda)]/[k_{\lambda,\text{R}^2\text{H}} \cdot (1 + \alpha_{\text{R}^2\text{H}} \cdot \lambda)].$$
 (3)

Алканы анализировали хроматографически (детектор пламенно-ионизационный, неподвижная фаза 5 % SE-30 на носителе Chromaton N-AW, силохром C-120 и C-80).

 $\underline{\mathit{Коэффициенты}}$ распределения. Для перехода от наблюдаемых констант k_λ к константам скорости k_1 и k в жидкой фазе необходимы данные о коэффициентах

распределения. Поскольку опытные значения α для 2,3-диметилбутана в изученных в работе растворах серной кислоты отсутствуют, оценку α проводили по интерполяционным зависимостям, как в [7-8], опираясь на экспериментальные значения α для RH в системе H₂O – H₂SO₄ в интервале от 0 до 100 % H₂SO₄ при 10 – 98 °C [9-10]. Полученные при 60 °C для 2,3-диметилбутана величины α приведены в табл.1.

Таблица 1. Значения α для 2,3-диметилбутана при 60 °C.

[H ₂ SO ₄], в мас. %	84,2	87,1	90,1	93,0
α	77	54	32	18

Результаты исследования.

В данной работе кинетические измерения для 2,3-диметилбутана (2,3-ДМБ) проведены при $[RH]_0 \le 1 \cdot 10^{-5}$ моль $\cdot \pi^{-1}$.

<u>Порядок реакции по метаванадиевой кислоте.</u> В растворах HVO₃ – 93 % H₂SO₄ порядок реакции (n) по концентрации метаванадиевой кислоты при 60 °C изучали на примере 2,3-диметилбутана. Концентрированные растворы ([HVO₃]· $10^2 = 6,67,6,42,5,18$ и 4,77 моль·кг⁻¹) готовили по навеске HVO₃, остальные – их разбавлением 93 %-ной серной кислотой. Величины k_{λ} во всех опытах измеряли при $\lambda = 1$. Величины k_{1} для 2,3-ДМБ в зависимости от [HVO₃] изменяются следующим образом, см. табл.2.

Таблица 2. Величины k_1 для 2,3-ДМБ в зависимости от [HVO₃].

$[HVO_3] \cdot 10^2$, моль · кг $^{-1}$	6,67	5,18	2,77	2,03	0,89	0,67	0,61
$k_1 = k_{\lambda} \cdot (1 + \alpha_{2,3-\text{ДΜБ}} \cdot \lambda) \cdot 10^2, c^{-1}$	4,0	2,7	1,2	0,84	0,21	0,14	0,09

Такое изменение константы k_1 с концентрацией HVO₃ хорошо описывается уравнением:

$$k_1 = k \cdot [HVO_3]^n. \tag{4}$$

При этом n = 1,52 (коэффициент детерминации $R^2 = 0,993$); $k_{2,3-\text{ДМБ}} = 2,6$ кг^{1,52}·моль^{-1,52}·с⁻¹. По данным [7] для циклогексана получено n = 1,61, $k_{c-C_6H_{12}} = (0,7 \pm 0,1)$ кг^{1,61}·моль^{-1,61}·с⁻¹.

<u>Влияние кислотности.</u> Убыль RH наблюдали в сернокислотных растворах HVO₃ лишь начиная с $[H_2SO_4] \ge 84$ мас. %. Отметим, что в системах с меньшей кислотностью HVO₃ − (54 − 70) % H_2SO_4 и HVO₃ − 51 % HClO₄ насыщенные углеводороды не окисляются. Зависимость

скорости реакции RH от кислотности среды изучена при 60 °C в растворах $(4,49 - 5,18) \cdot 10^{-2}$ моль·кг $^{-1}$ HVO $_3$ – (84 - 93) мас. % H $_2$ SO $_4$ на примере реакции 2,3-диметилбутана, см. табл.3.

Таблица 3. Зависимость скорости реакции RH от кислотности среды на примере реакции 2,3-диметилбутана.

[H ₂ SO ₄], mac. %	84,2	87,1	90,1	92,7	92,7
k, кг ^{1,52} ·моль ^{-1,52} ·с ⁻¹	< 0,03	0,35	2,0	2,4	2,2

В растворе 4,67 10^{-2} моль·кг⁻¹ HVO₃ - 92,7 % H₂SO₄ константа k=2,4 измерена в условиях конкурентного окисления смеси 2,3-диметилбутана, 2-метилбутана и 2-метилгексана; остальные величины k получены в индивидуальном окислении 2,3-ДМБ. Для реакции в растворе 84,2 %-ной серной кислоты (наименьшей концентрации H₂SO₄) КРМ позволяет определить лишь верхний предел константы скорости. Константа скорости реакции для 2,3-ДМБ растет не менее чем в 60 раз в интервале от 84 % до 90 % H₂SO₄ и при 92 % H₂SO₄ выходит на плато. Наклоны зависимостей в координатах $\lg k$ от функции кислотности Гаммета H_0 [11], ($\Delta \lg k / \Delta H_0$), и $\lg k$ от функции кислотности H_R [12], ($\Delta \lg k / \Delta H_R$), в области линейности до плато оцениваются по трем измерениям как \leq 2,1 и \leq 1,2 соответственно. Использование величин H_0 при 60 °C [13] вместо H_0 при 25 °C [12] не сказывается на величине наклонов.

<u>Кислотно-каталитический характер реакций углеводородов в системе $HVO_3 - H_2SO_4$.</u> <u>Сравнение с сернокислотными растворами других реагентов</u>. Для определения природы непосредственного реагента — активной частицы — в реакциях углеводородов в сернокислотных растворах ванадия(5+), наряду с анализом литературных данных о составе этих растворов [14-17], информативным является изучение зависимости скорости реакций от кислотности среды, для описания которой преимущественно используют уравнения:

$$\lg k = C_0 - m_0 \cdot H_0, \tag{5a}$$

$$\lg k = C_R - m_R H_R, \tag{56}$$

где k — константа скорости; H_0 и H_R — функции кислотности, характеризующие способность кислотных растворов (а) протонировать реагент (функция Гаммета H_0), и (б) превращать спирты в карбокатионы (H_R); $m_0 = -(\Delta \lg k / \Delta H_0)$, $m_R = -(\Delta \lg k / \Delta H_R)$ — наклоны, а C_0 , C_R — отсекаемые на оси ординат отрезки для зависимостей (5а) и (5б) соответственно.

Как отмечено выше, для реакций в системе $HVO_3 - H_2SO_4$ наклоны этих зависимостей m_0 и m_R больше 1, особенно в координатах $\Delta lgk - \Delta H_0$, что свидетельствует о значительном кислотно-каталитическом влиянии среды на реакции RH с комплексами ванадия(5+).

В табл. 4 для сравнения приведены данные по влиянию среды в реакциях RH и ароматических углеводородов (ArH) в сернокислотных растворах с реагентами: 1-адамантанол (AdOH), азотная (HNO₃) и HVO₃ кислоты, комплексы хрома(6+) и ртути(2+), формальдегид (CH₂O), комплексы палладия(2+) и платины(3+), пероксидисульфат аммония или пероксид водорода; и в самой серной кислоте (H₂SO₄ – реагент). Для этих систем рассмотренные реакции бензола и алкилбензолов зафиксированы при [H₂SO₄] \geq 57 %, тогда как изо- и циклоалканов – в более кислой среде при [H₂SO₄] \geq 84 %, за исключением растворов хрома(6+), где окисление RH зафиксировано уже в 40 % H₂SO₄. Реакции в концентрированной серной кислоте и в системах, содержащих компексы Hg²⁺, Pd²⁺, Pt³⁺, изучены при 90 °C, остальные при 25 – 70 °C. Системы реагент – H₂SO₄ в табл. 1 представлены в виде 2-х групп, отличающихся значением m₀: 1) системы с 1-й по 7-ю, m₀ > 1, 2) с 8-й по 10-ю, m₀ ~ 1.

Согласно [18] в растворах AdOH – H_2SO_4 протонирование AdOH и последующее отщепление воды приводят к образованию 1-адамантильного карбокатиона (Ad⁺), который, по данным [19], является непосредственным реагентом в реакциях с ArH и с RH. Одним из результатов, подтверждающих этот вывод, являются наклоны зависимостей (5а) и (5б), найденные для реакций в растворах AdOH – H_2SO_4 . Использование для описания данных о влиянии кислотности на скорость реакции как аренов, так и циклоалканов функции H_0 дает m_0 = 1,4 – 1,5, тогда как использование H_R дает наклоны более близкие к единице m_R =0,8 – 0,9 (табл. 1), что позволяет представить общее кинетическое уравнение в виде:

$$-(d[RH] / d\tau) = k \cdot [RH] [AdOH] \cdot h_R.$$
 (6)

Генерирование нитроний катиона NO_2^+ в растворах $HNO_3 - H_2SO_4$ [9] и VO_2^+ –диоксокатиона ванадия(5+) и других комплексов ванадия(5+) в $HVO_3 - H_2SO_4$ [14-17] обус- ловлено протонированием соответственно HNO_3 и HVO_3 и последующей их дегидратацией, что позволяет применить к этим некарбокатионным частицам, как и к карбокатиону Ad^+ в системе $AdOH - H_2SO_4$, функцию кислотности H_R . В этих двух системах рост констант скорости с ростом $[H_2SO_4]$ достигает максимума (в случае NO_2^+) или завершается выходом на плато (комплексы V^{5+}), а величины наклонов, приведенные в табл. 1, рассчитаны на участках до максимума или плато.

Таблица 4. Влияние кислотности среды на реакции субстратов RH и ArH в системах реагент – серная кислота и в самой серной кислоте¹⁾

No	Реагент	[H ₂ SO ₄	El ²⁾	Субстрат, <i>T</i> в ⁰ С	$m_0^{3)}$	$m_R^{4)}$
JN⊡]				
1	1-адамантанол	85–94	Ad ⁺ [19]	c-C ₆ H ₁₂ , 70	1,5±0,1	0,8±0,1
1		66–78	Ad ⁺ [19]	CH ₃ C ₆ H ₅ , 30	1,4±0,2	0,9±0,1
2	HNO ₃	86–92	NO ₂ ⁺ [9]	<i>i</i> -C ₄ H ₁₀ , <i>c</i> -C ₆ H ₁₂ , 25	1,5 ^{5,6)}	$0,8-0,9^{5)}$
		84–90	V_3O_2	2,3-диметилбутан,	$\leq 2,1^{5)}$	$\leq 1,2^{5)}$
3	HVO ₃			60		
		57–65	V0 ₂ ⁺ [6]	$CH_3C_6H_5$, $CD_3C_6D_5$,	$1,6\pm0,1^{5}$	0.8 ± 0.1^{5}
				$C_2H_5C_6H_5, 30$		
4	H ₂ CrO ₄	45-	HCrO ₃	c-C ₆ H ₁₂ , c -C ₅ H ₁₀ , ⁷⁾ 25	1,66)	0,86)
	112C1O4	60,3 [9]	HSO ₄ [9, 20]	метилциклогексан ⁷⁾	$1,5^{6)}$	$0,7^{6)}$
	H ₂ SO ₄	84– 99,5	SO ₃ H ⁺ [9]	c-C ₆ H ₁₂ , 90	1,3±0,2	
				2,2,4-	1,5±0,1	
5				триметилпентан	1,6±0,1	_
				Метилциклогексан	1,7±0,1	
				i-C ₄ H ₁₀ , i -C ₅ H ₁₂		
6	Hg(SO ₄) ₂	87–93	Hg(OSO ₃ H)	метилциклопентан,	$2,4^{6)}$	1,46)
			2 [9]	90		
		88,8–		c-C ₆ H ₁₂ , 25	$3,4^{8)}$	1,88)
7	Формальдегид	93	CH ₂ OH ⁺			
	CH ₂ O	60,2-	[21]	$C_6H_6, 25$	1,38)	0,8
		80				
		86,7–	Комплексы	i-C ₄ H ₁₀ , i -C ₅ H ₁₂ , 90	0,9-1,0	_
8	PdSO ₄	96	Pd ²⁺ [20]			
		80–95		c-C ₆ H ₁₂ , 90	1,2	_
9	Pt^{3+} – сульфат	86–93	Pt ³⁺ [9, 20]	<i>i</i> -C ₄ H ₁₀ , 90	1,0	_
10	$(NH_4)_2S_2O_8$	90–96	$H_3O_2^+$ [9,	$i-C_5H_{12}, n-C_6H_{14},$	0,8	_
1)xc	или Н ₂ О ₂		20]	c-C ₆ H ₁₂ , 90	,	

¹⁾Концентрация H_2SO_4 в мас.%. ²⁾El — предполагаемая активная частица электрофил. ³⁾ m_0 — наклон зависимости $\lg k - H_0$, уравнение (5а). ⁴⁾ m_R — наклон зависимости $\lg k - H_R$, уравнение (5б). ⁵⁾Оценка из зависимостей $\lg k - H_0$ (или H_R) до максимума или плато. ⁶⁾Оценка по данным [9]. ⁷⁾Оценка по 2-м измерениям. ⁸⁾Оценка по данным [21].

Согласно [9] скорости окисления RH в системе $HNO_3 - H_2SO_4$ растут и достигают максимума в области 92 - 94 %, при дальнейшем повышении $[H_2SO_4]$ скорость снижается. В этой работе по данным [9] для реакций $RH + NO_2^+$ в интервале (87 - 92) % H_2SO_4 показано, что наклон m_R ближе к 1, чем m_0 .

В системе HVO₃ – H₂SO₄ окисление бензола и алкилбензолов наблюдается уже при [H₂SO₄] \geq 54 мас. % [6]. С ростом концентрации серной кислоты от 57 до 65 % величины константы скорости растут, далее до 68 % H₂SO₄ перестают изменяться. Предположено, что в области (65 – 68) % H₂SO₄ концентрация активной частицы достигает равновесного предела и не изменяется. Поскольку у авторов [6] не было «возможности сделать обоснованный выбор между частицами», рассмотренными в литературе, в качестве непосредственного реагента остановились на VO₂+, образование которого передается схемой:

$$HVO_3 + H^+ \leftrightarrow H_2VO_3^+ \qquad \text{if} \qquad H_2VO_3^+ \leftrightarrow VO_2^+ + H_2O,$$
 (7)

что согласуется с наклоном m_R более близким к 1, чем m₀.

Активация в системе $HVO_3-H_2SO_4$ связи C-H в алканах наблюдается при $[H_2SO_4] \geq 84$ мас. %. По данным [16] в концентрированных растворах серной кислоты из ионов аквадиоксованадия(5+) образуются димеры – ионы с центральной группой $V_2O_3^{4+}$, стабилизированной за счет комплексообразования с лигандами HSO_4^- или SO_4^{2-} :

$$2VO_2(H_2O)_4^+ + xHSO_4^- \leftrightarrow V_2O_3(H_2O)_{8-2x}(SO_4)_x^{(4-2x)} + (x-2)H^+ + (2x+1)H_2O.$$
 (8)

Опираясь на выводы [16] о том, что в (76-88) % H_2SO_4 рост концентрации ванадия(5+) или температуры ведет к образованию тримерных частиц, обозначенных как V_3O_2 , предположили, по аналогии с уравнением (8), что эти комплексы – результат реакции моно- и диоксокомплексов V^{5+} со связыванием избыточного кислорода также при участии лигандов HSO_4^- :

$$VO_{2}(H_{2}O)_{4}^{+} + V_{2}O_{3}(H_{2}O)_{8}^{4+} + xHSO_{4}^{-} \leftrightarrow V_{3}O_{2}(H_{2}O)_{12-2x}(SO_{4})_{x}^{(11-2x)} + (x-6)H^{+} + (2x+3)H_{2}O.$$

$$(9)$$

Найденный порядок по [HVO₃] (n = 1,5) отвечает тримеру ванадия(5+) как активной частице, поскольку, по данным [7], из уравнений (7) – (9) следует, что [V₃O₂] ~ [HVO₃]^{1,5}.

Для реакций RH + V_3O_2 в интервале (84 – 90) % H_2SO_4 величины константы скорости растут, далее в области (90 – 93) % H_2SO_4 перестают изменяться, вероятно, из-за достижения равновесного предела концентрации активной частицы. Характер зависимости величин k от кислотности среды для реакций $ArH + VO_2^+$ и $RH + V_3O_2$ одинаков, при этом величины наклонов m_0 и m_R в \sim 1,5 раза выше в реакции RH, чем ArH, что может быть следствием более глубокого протонирования HVO_3 в случае образования тримера V_3O_2 , чем мономера VO_2^+ , уравнения (7) – (9).

Для реакций $H_2CrO_4 + c$ -RH по данным [9] m_R ближе к 1, чем m_0 , что согласуется с представлением авторов [9] о природе активной частицы, хромилсерной кислоты, образующейся по реакции:

$$H_2CrO_4 + H^+ + HSO_4^- \leftrightarrow HCrO_3OSO_3H + H_2O.$$
 (10)

Для 4-х рассмотренных систем, изученных при 25, 30, 60 и 70 °C, использованы H_0 и H_R при 25 °C. Наклоны m_0 в реакциях изо- и циклоалканов в системе серная кислота без реагента, полученные в [9] по кинетическим данным при 90 °C и величинам H_0 при 90 °C, также больше 1 и лежат в интервале 1,3 – 1,7. Возможный маршрут образования активных частиц в серной кислоте представлен на схеме:

$$H_2SO_4 + H^+ \leftrightarrow H_3SO_4^+ \qquad \text{if} \quad H_3SO_4^+ \leftrightarrow SO_3H^+ + H_2O.$$
 (11)

Расчет по данным [9] наклона m_R некорректен, поскольку величины H_R [12] измерены в интервале (0,5 – 98) % H_2SO_4 при 25 °C, а константы в области [H_2SO_4] до 99,5 % при 90 °C.

В работе [21] приведены данные по зависимости константы скорости реакции циклогексана и бензола в сернокислотных растворах формальдегида от $[H_2SO_4]$. Для бензола близкий к 1 наклон m_R позволил авторам [21] предположить быструю стадию кислотно-каталитической гидратации с образованием активной частицы протонированного формальдегида. По результатам [21] для реакции циклогексана в

данной работе получены самые высокие значения m_0 и m_R , обусловенные, возможно, полимеризацией формальдегида [22], приводящей к более сложной структуре непосредственного реагента.

В растворах $HgSO_4 - (87 - 92)$ % H_2SO_4 в реакции метилциклопентана при 90 °C по оценке данных [9] $m_0 \approx 2.4$, $m_R \approx 1.4$. Остановимся подробно на этой системе.

В работах Перианы и сотр. [23-24] показано, что в более жестких условиях при ~ 180 °C в растворе $20\cdot10^{-3}$ моль· π^{-1} Hg(HSO₄)₂ в 96 %-ной серной кислоте метан превращается в метанол ([CH₃OH] = 1 моль· π^{-1}) с выходом более 40 % на взятый CH₄ и с селективностью более 90 % на CH₃OH:

$$CH_4 + H_2SO_4 \xrightarrow{Hg(II)-H2SO4} CH_3OH + H_2O + SO_2. \tag{12}$$

Предложен механизм электрофильного замещения, начинающийся координации метана во внутреннюю сферу слабо сольватированных растворителем (Sol) частиц катализатора $[(HSO_4)Hg - Sol]^+HSO_4^-$, образующихся за счет автоионизации исходного Hg(HSO₄)₂. Замена Sol на CH₄ приводит к метановому комплексу $[(HSO_4)Hg \leftarrow H-CH_3]^+HSO_4^-$, в котором, в результате взаимодействия водорода метана с электрофильным двух координационным центром ртути и последующей «нуклеофильной атаки» серной кислоты отщепляется протон с образованием интермедиата [CH₃HgHSO₄]. Отщепление H⁺ свидетельствует о том, что активированный метан приобретает достаточно кислые свойства. Получены экспериментальные доказательства [23] того, что метилбисульфат ртути есть продукт активации метана на Hg(II). Зафиксированы низкие стационарные концентрации этого комплекса в реакции ${}^{13}\text{CH}_4 + \text{Hg}(\text{HSO}_4)_2 + \text{H}_2\text{SO}_4$. Его идентичность подтверждена сравнением с образцом CH₃HgOSO₃H, полученным в реакции:

$$Hg(CH_3)_2 + H_2SO_4 \rightarrow CH_3HgOSO_3H + CH_4.$$
 (13)

В реакции метана с D_2SO_4 в присутствии Hg(II) показано вхождение дейтерия в CH_4 , что объяснили дейтеролизом интермедиата: $CH_4 + Hg(II) \xrightarrow{-H^+} CH_3Hg(II) \xrightarrow{D^+} CH_3D + Hg(II)$. В реакции с H_2SO_4 при 180° С микроскопическая обратимая стадия активации метана приводит к $Hg(OSO_3H)_2$ и CH_4 . На стадии функционализации комплекс CH_3HgHSO_4 под действием $Hg(HSO_4)_2$ и воды превращается в метанол, а

восстановленный катализатор быстро окисляется горячей серной кислотой.

Для рассмотренной реакции $[(HSO_4)Hg]^+ + CH_4$ найденные активационные барьеры составляют $\sim 29~{\rm ккал\cdot моль^{-1}}$ теоретически рассчитанный и $\sim 28~{\rm ккал\cdot моль^{-1}}$ экспериментальные. Как теоретические, так и экспериментальные исследования свидетельствуют о том, что частицы $[CH_3Hg]^+$ реагируют \sim в 10^3 раз быстрее со связью C–H метана, чем метанола, который в серной кислоте существует в основном в протонированной $[CH_3OH_2]^+$ или сульфатной CH_3OSO_3H формах, что значительно снижает их электронную плотность на связях C–H по сравнению со связью C–H в метане.

Во вторую группу сернокислотных растворов электрофилов отнесены системы: $PdSO_4 - H_2SO_4$; растворы Pt^{3+} — сульфат, полученные кипячением H_2PtCl_6 с H_2SO_4 [9]; и $(NH_4)_2S_2O_8 - H_2SO_4$ или $H_2O_2 - H_2SO_4$. В двух последних системах при одинаковых условиях константы скорости равны. Для этой группы величины m_0 близки к одинице, что отвечает переносу на реагент одного протона. В случае пероксида водорода непосредственный реагент $H_3O_2^+$, для комплексов Pd^{2+} и Pt^{3+} протонирование усиливает их электрофильность, однако природа активных частиц не является полностью установленной.

Выводы.

- 1. Изучена активация связи С–Н насыщенных углеводородов (RH) в сернокислотных растворах электрофилов и окислителей в мягких условиях (T < 100 °C, [H₂SO₄] ≤ 100 мас. %). Установлены закономерности влияния среды на скорость реакций RH. Поскольку субстраты RH в силу их инертности практически не подвержены этому влиянию, роль кислоты сводится к первоначальной активации реагента, к переводу его в активную ионизованную частицу.
- 2. Реакции RH с электрофильными реагентами зафиксированы при $[H_2SO_4] \ge 80$ %, с сильными окислителями, хром(6+), при $[H_2SO_4] \ge 40$ %. Характер зависимости скорости реакции от кислотности среды проанализирован с использованием шкалы Гаммета, функция кислотности H_0 , или в шкале H_R .
- 3. Определены наклоны зависимостей $\lg k H_0$ (наклон m_0) и $\lg k H_R$ (m_R) в реакциях RH в 10-и системах, что позволило разделить эти реакции на две группы: первая 1,3 \leq m_0 < 4 и вторая m_0 \sim 1. В реакциях RH с 1,3 \leq m_0 < 2 наклон m_R близкий

к 1, что согласуется с наличием активной частицы, образующейся в результате протонирования реагента и последующего отщепления воды. Такими частицами являются: Ad^+ , NO_2^+ , $HCrO_3^+$. К ним отнесена частица SO_3H^+ . Для реакций RH с реагентами H_2CO , $Hg(SO_4)_2$, HVO_3 4 > m_0 > 2, что свидетельствует о более глубоком протонировании и о сложной природе активной частицы. В реакциях RH с H_2O_2 , Pt^{3+} – сульфат, $PdSO_4$ электрофильность реагентов растет за счет протонирования и m_0 ~ 1.

Список литературы.

- 1. Shul'pin G. B. Hydrocarbon Oxygenations with Peroxides Catalyzed by Metal Compound / G. B. Shul'pin // Mini-Reviews in Organic Chemistry. 2009. Vol. 6. P. 95-104.
- Гехман А. Е. Гидропероксидное окисление трудноокисляемых субстратов: Беспрецедентный разрыв связи С–С в алканах, окисление молекулярного азота / А. Е. Гехман, И. П. Столяров, Н. В. Ершова, Н. И. Моисеева, И. И. Моисеев // Кинетика и катализ. – 2004. – Т. 45, № 1. – С. 45-66.
- 3. Gunay A. C–H Bond Activations by Metal Oxo Compounds / A. Gunay, K.H. Theopold // Chem. Rev. 2010. Vol. 110, № 2. P.1060-1081.
- Maurua M.R. Vanadium complexes immobilized on solid supports and their use as catalysts for oxidation and functionalization of alkanes and alkenes / M.R. Maurua, A. Kumar, J.C. Pessoa // Coordination Chemistry Reviews. – 2011.– Vol. 255. – P. 2315-2344.
- 5. Crans D.C. The Chemistry and Biochemistry of Vanadium and Biological Activities Exerted by Vanadium Compaunds / D.C. Crans, J.J. Smee, E. Gaidamauskas, L. Yang // Chem. Rev. 2004. Vol. 104. P. 849-902.
- 6. Рудаков Е.С. Кинетика и механизм реакций аренов в системе HVO₃ серная кислота. Расширенный компенсационный эффект / Е.С. Рудаков, Л.К. Волкова // Кинетика и катализ. 2006. Т. 47, № 6. С. 885-893.
- 7. Рудаков Е.С. Кинетика, эффект (5/6) и кинетический изотопный эффект в реакциях циклоалканов C_5H_{10} , C_6H_{12} , C_6D_{12} в растворах метаванадиевая кислота серная кислота / Е.С. Рудаков, Л.К. Волкова, М.А. Коробченко, М.А. Мерзликина // Укр. хим. журн. 2014. Т. 80, № 4.— С. 75-80.

- Волкова Л.К. Кинетика реакций циклоалканов и алканов в растворах ванадий(V) серная кислота / Л.К. Волкова, М.А. Мерзликина // Катализ и нефтехимия. 2016. №25. С. 45-50.
- 9. Рудаков Е.С. Реакции алканов с окислителями, металлокомплексами и радикалами в растворах / Е.С. Рудаков. Киев: Наук. думка, 1985. 248 с.
- Луцык А.И. Растворимость метана, пропана и *н*-гексана в системе вода серная кислота при 283–343 К / А.И. Луцык, Е.С. Рудаков, Г.Г. Гундилович, В.Н. Мочалин / Журн. физ. химии. 1999. Т.73, №3. С. 460-464.
- 11. Винник М.И. Функция кислотности водных растворов сильных кислот / М.И. Винник // Успехи химии. 1966. Т. 35, № 11. С. 1922-952.
- 12. Deno N.C. Carbonium ions. I. An acidity function (C₀) derived from arylcarbonium ion equilibria / N.C. Deno, J.J. Jaruzelski, A. Schriesheim // J. Amer. Chem. Soc. 1955. Vol. 77, № 11.– P. 3044-3051.
- 13. Johnson C.D. The temperature variation of the H₀ acidity function in aqueous sulfuric acid solution / C.D. Johnson, A.R. Katritzky, S.A. Shapiro // J. Amer. Chem. Soc. 1969. Vol. 91, № 24. P. 6654-6662.
- Ивакин А. А. Химия пятивалентного ванадия в водных растворах / А.А. Ивакин,
 А. А. Фотиев. Свердловск: Труды института химии АН СССР. Уральский научный центр, 1971. № 24. 190 с.
- 15. Gillespie R.J. The sulfuric acid solvent systems. Part VIII. Solutions of some phosphorus(V) and vanadium(V) compounds / R. J. Gillespie, A. R. Kapoor, E. A. Robinson // Can. J. Chem. − 1966. − Vol. 44, № 10. − P. 1203-1210.
- 16. Madic C. Dimerization of aquadioxovanadium(V) ion in concentrated perchloric and sulfuric acid media / C. Madic, G.M. Begun, R. L. Hahn, J. P. Launay, W. E. Thiessen // Inorg. Chem. 1984. Vol. 23, № 4. P. 469-476.
- 17. Курбатова Л.Д. Комплексы ванадия(V) в растворах серной кислоты / Л.Д. Курбатова, Д.И. Курбатов // Журн. неорган. химии. -2006. Т. 51, № 5. С. 908-910.
- 18. Geluk H. W. Hydride transfer reactions of the adamantyl cation I. A new and convenient synthesis of adamantanone / H. W. Geluk, J. L. M. A. Schlatmann // Tetrahedron. 1968. Vol.24. P. 5361-5368.

- 19. Рудаков Е. С. Первые стадии реакций алканов и аренов с адамантальными катионами в серной кислоте в сравнении с другими реагентами / Е. С. Рудаков, Л. К.Волкова // Изв. Акад. наук. Сер. хим. 2008, № 8. С. 1581-1596.
- 20. Гончарук Г.А. Катализ. Механизмы гомогенного и гетерогенного катализа, кластерные подходы / Г.А. Гончарук, Г.Л. Камалов, В.В. Ковтун, Е.С. Рудаков, В.К. Яцимирский. Киев: Наук. думка, 2002. 541 с.
- 21. Тищенко Н. А. Кинетика и механизмы гомогенных реакций алканов в серной кислоте в присутствии карбокатионов III. Первая стадия взаимодействия насыщенных и ароматических углеводородов с оксиметильными катионами / Н.А.Тищенко, Е.С. Рудаков // Кинетика и катализ. 1990. Т. 31, № 1. С.32-36.
- 22. Мощинская Н.К. Полимерные материалы на основе ароматических углеводородов и формальдегида / Н.К. Мощинская. Киев: Техніка, 1970. 256 с.
- 23. Periana R.A. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol / R.A. Periana, D.J. Taube, E.R. Evitt, D.G. Loffler, P.R. Wentrcek, G. Voss, T. Masuda // Science. 1993. Vol. 259. P. 340-343.
- 24. Periana R.A. Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the CH activation reaction / R.A. Periana, G. Bhalla, W.J. Tenn, III, Kenneth J.H. Young, X.Y. Liu, O. Mironov, CJ Jones, V.R. Ziatdinov // Journal of Molecular Catalysis A: Chemical. 2004. –Vol. 204. P. 7-25.