. . o
s - " - o -
- - F . .
- -
- & > . . -
» -
- . = 9 - ey

Ministry of education and science of Ukraine
Kyiv National University of technologies and design

Rezanova V.G., Shcherban V.Yu.,
Demkivska T.1.

TECHNOLOGIES OF
DEVELOPMENT
SOFTWARE PRODUCTS

Tutorial for students of specialty 122
Computer Science

Recommended by the Academic Council of the Kyiv National University of
Technologies and Design (Protocol Ne 6 of Janyary, 26, 2022)

Kyiv-2022

VIK 004.42

Recommended by the Academic Council of the Kyiv National University of
Technology and Design for students of computer science and related specialities
(Protocol M2 6 of January, 26, 2022)

Authors:
REZANOVA V.G. - Candidate of Technical Sciences, Associate Professor of the Department of
Computer Science, Kyiv National University of Technologies and Design ;
SHCHERBAN V.Yu. — Laureate of the State Prize of Ukraine in the field of science and
technology, professor, Doctor of Technical Sciences, Professor of the Department of Computer
Science, Kyiv National University of Technologies and Design;
DEMKIVSKA T.1. - Candidate of Technical Sciences, Associate Professor of the Department of
Computer Science, Kyiv National University of Technologies and Design

Reviewers:
OPANASENKO V, M. - Laureate of the State Prize of Ukraine in the field of science and
technology, Doctor of Technical Sciences, Professor, Leading Researcher of the Institute of
Cybernetics of the National Academy of Sciences of Ukraine;
KRASNITSKY S.M. - Doctor of Physical and Mathematical Sciences, Professor, Kyiv National
University of Technology and Design

Rezanova V.G., Shcherban V.Yu., Demkivska T.l. Technologies of development
software products. Tutorial for students of specialty 122 Computer science. — K.:
Bunasuuunii qim «Aptek», 2022. — 234 c.

ISBN 978-617-8043-33-9

The tutorial outlines the approaches and methodology of designing complex objects and
systems; principles of construction and operation of CAD; models of design objects; modern
software development methodologies; software life cycle, methods, languages and standards of
information support of software products at different stages of their life cycle; structural
methodology of information systems development; methods of verification and testing of
programs and systems; methods for assessing the quality of software products, software
development technologies, CASE tools; features of modern large-scale information systems
projects. The textbook is fully consistent with the program of the discipline " technologies of
development software products " and in addition to theoretical information contains a guide to
work in special software packages with examples of practical problems.

The tutorial is intended for for students of computer science and related specialities

ISBN 978-617-8043-33-9 VJIK 004.42
© B.I".Pe3anosa, 2022
© Buga. gim «Aptek», 2022

CONTENT
INtrOdUCTION. . ..o,

PART I

I.1. Basic concepts and methodology for designing
complex objects and systemscccoiiiiinn.

1.2. System (structural) level of computer design objects
1.3. Principles of construction and operation of CAD...
I.4. Mathematical support for computer design
1.5. Experimental mathematical models of design objects
I.6. Theoretical mathematical models of design objects

1.7. Integrated automated design systems. Design and
product life cycle management systems.....................

1.8. CASE — technologies of computer design

1.9. Software development methodologies (RUP, MSF,
XP, DSDM, RAD).....ouoeeeeiiieee e

1.10. Methods of verification and testing of programs
and SYStEMS ...

I.11. Models of quality and reliability in software
BNQINEEIING. ...ttt

1.12. Assembly, documentation and maintenance of
SOTEWANE. ...eei

PART II

I.1. Practical methods of work in Microsoft Project
BNVIFONMENT. ...,

I1.1.1. Creating and planning a project in Microsoft
PrOJECT. .

[1.1.2. Risk management in Microsoft Project.........

3

15
24
29
35
52

59
74

87

105

119

137

146

11.1.3. Visual reports in MS Project....................
Control questions and tasks for part I1.1...................

I.2. Practical methods of work in Rational Rose
BNVITONMENT. .ttt

I1.2.1. Visual modeling of information systems. use
case and actions diagrams in the design system
Rational ROSE..........oooiiiiii

11.2.2. Development of class diagram as a model
of realobject............oooiiii

I1.1.3. Software for class diagram implementation....
Control questions and tasks for part I1.2...................
LITERATURE. ...

177
186

187

187

197
220
231
233

INTRODUCTION

Humanity entered the age of informatization, as you
can see in the following: information and information resources
on the global market are becoming the most important high-
tech product; firms, that develop automated information
technology, stand at leading positions in the world economy,
determine further development of competitive product
development; it is impossible to create high technologies
without informatization; information technologies (IT) open
up new opportunities in increasing the efficiency of production
process in the field of education and life, provide a
management of group projects, Internet technologies, CALS-
technologies, distance education etc.; informatization of society
leads to internationalization of production.

An indicator of the scientific and technological power
of the country is the foreign trade balance of professional
knowledge, which is realized by the market of licenses of
production processes, know-how and consultations on the
application of science-intensive products. For example: USA
handles about 80% of innovations to affiliated companies in
other countries. As long as these companies master the
proposed technology, the USA is preparing new ones, which
means that the advanced technological cycle of a highly
developed country is being implemented. Among the most
important components of the power of information of the USA
is the global leadership in the development, production and use
of information technology.

This way the evolution of the world market benefits the
country itself, which creates and transfers high-tech products to
other countries. Other countries should include new
technologies and modern professional knowledge. That is why
in the information society information, knowledge, creativity
become a strategic resource. Through distance learning,

5

computer games, computer video and other IT, computer
technology has a tremendous impact on the formation of
conditions and environments in which talent develops and
thrives. It is assumed that the social impact of the information
revolution will consist in the synthesis of Western and Oriental
thought.

In connection with the above, there is a need for
specialists who have the ability to apply the theoretical and
practical foundations of methodology and modeling technology
to study the characteristics and behavior of complex objects
and systems; ability to apply methodologies, technologies and
tools to manage the life cycle processes of information and
software systems and information technology products in
accordance with customer requirements.

PART I

I.1. BASIC CONCEPTS AND METHODOLOGY FOR
DESIGNING COMPLEX OBJECTS AND SYSTEMS

Informational technologies - a new area of knowledge

Information technology plays a significant strategic
role in the development of each country. Their significance is
rapidly increasing due to the fact that IT:

- activates and increases the efficiency of the use of
information resources, provides saving of raw materials,
energy, minerals, materials and equipment, human resources,
social time;

- realizes the most important important and intellectual
functions of social processes; occupies a central place in the
process of intellectualization of society, in the development of
the educational system, culture, new forms of art (displayed on
the screen), the popularization of world culture masterpieces
and the history of human development;

- provides informational interaction among people,
promotes the dissemination of mass information;

- quickly assimilated by the culture of society,
eliminating many social, domestic and industrial problems,
expanding domestic and international economic and cultural
ties, affecting the migration of the population on the planet;

- optimizes and automates information processes during
the formation of the information society;

- plays a key role in the processes of obtaining,
accumulation, dissemination of new knowledge in three
directions.

The first one is an information modeling that allows for
a "computational experiment" even in conditions that are
impossible for a natural experiment because of the danger,
complexity and high cost. she second direction is based on
methods of artificial intelligence. It allows you to find solutions
to poorly formalized tasks, tasks with incomplete information

7

and incorrect outcomes by applying an analogy with the
creation of metaprocesses used by the human brain. The third
direction is based on the methods of cognitive graphics, that is,
a set of techniques and methods of imaginary representation of
the conditions of the problem, which allow you to immediately
see the solution or get a clue for finding it. It opens up the
possibilities for a person to learn about himself, the principles
of functioning of his consciousness. In addition, in this case it
becomes possible to implement the methods of information
modeling of global processes, which provides the ability to
predict many natural situations in regions of increased social
and political tensions, environmental disasters, major man-
made accidents.
General definitions

Terminology in the field of IT is annually with new
concepts, abbreviations etc., that's why only the definitions of
the general nature is given in this section.

The very term information comes from the Latin word,
meaning "clarification, informing, presentation”. The concept
of "information" is widely used in the ordinary life of a modern
person, so everyone has an intuitive idea of what it is. But
when science begins to apply well-known concepts, it clarifies
them, restricts the use of the term strictly within its scope in a
particular scientific field. Thus, the concept of information in
each of them is specified and enriched, becoming the subject of
study of many sciences.

The concept of information is one of the primary
concepts in modern science. The importance of information in
the life of society is rapidly increasing, the methods of working
with information are changing, the scope of application of new
information technologies is expanding.

The complexity of the phenomenon of information, its
versatility, the breadth of its scope and rapid development are
reflected in the constant emergence of new interpretations of

8

the concepts of information and information technology.
Therefore, there are various definitions of the concept of
information, from the most general, philosophical -
"Information is a reflection of the real world" - to the narrow,
practical - "Information is all information that is the object of
storage, transmission and transformation”. Let's show some
other definitions and characteristics for comparison.
Information is one of the fundamental entities of the world
around us. Information is the knowledge, transmitted by some
people to other people in oral, written or some other way.

Information is one of the main universal properties of
matter.

When talking about information, it is important to
understand not the objects and processes themselves, but their
reflection in the form of numbers, formulas, descriptions,
drawings, symbols, images. The information itself can be
attributed to the field of abstract categories, such as
mathematical formulas although a working process is always
associated with the use of any materials and energy costs. The
information is stored as the rock paintings of ancient people in
stone, in the texts of books on paper, in paintings on canvas, in
musical tape recordings on a magnetic tape, in the data of the
computer's memory, in the inherited DNA code of every living
cell, in the human memory inside the brain etc. In order to
record, store, process, distribute one of the materials is required
(stone, paper, canvas, magnetic tape, electronic data carriers).
In addition, energy is needed, for example, in order to operate
printers, to create an artificial climate for the preservation of
masterpieces of fine art, to nourish electricity circuitry, to
support the work of transmitters on radio and television
stations.

The term informatization can be deciphered as an
effective use of information and computer technology in all
spheres of activity as a set of measures aimed at ensuring the

9

full and timely use of reliable knowledge in all socially
significant forms of human activity. by the public. The main
purpose of informatization is providing a solution to the actual
problems of society, satisfaction of demands for information
products and services.

The term technology comes from the Greek teche +
logos, meaning "skills + teachings". In the manufacturing
process, technology is understood as the system of
interconnected methods of processing materials and methods of
manufacturing products. In general, technology is the rules of
actions of using any means that are common to an entire set of
tasks or task situations. The purpose of technology in industrial
production is to improve the quality of products, reduce the
timing of its production and reduce the cost.The production of
information is aimed at the expedient use of information
resources and their supply to all elements of the organizational
structure and implemented through the creation of an
information system.

Information technology is a set of forms, methods and
means of automation of information activities in various
spheres.

IT, as a study, includes methodical and methodological
provisions, organizational settings, methods of using
instrumental and technical means, etc. All that regulates and
supports the information production and activities of people
involved in this production.

The transformation of new scientific knowledge into a
specific information technology is the main task of the IT as a
study. Let's look at the subject of discussion and state some of
the concepts:

IT is a set of scientific methods and techniques for the
production of information products and services with the use of
the entire variety of computing and communications;

10

IT is a bordering region that covers both computational
technology and specific social information practices,
rationalizes them at the expense of the widespread use of
computer technology;

IT is a set of fundamentally new tools and methods that
provide creation, processing, transmission, display and storage
of information.

Information technology provides a transition from
routine to industrial methods and working tools with
information in various areas of human activity, allowing them
to use it rationally and effectively.

There are three levels of information technology
review:

the first level is theoretical. The main task is a creation
of a complex of interrelated models of information processes,
being parametric and criterion compatible;

second level is research. The main task is the
development of methods that allow to automate the design of
optimal concrete information technology;

third level is applicational.

Automated information technologies are aimed at
increasing the degree of automation of all information
operations and, consequently, to accelerate the scientific and
technological progress of society.

Information systems

The term "information system™ (IC) emerged alongside
with the widespread use of new information technologies.

The information system carries out a collection,
transmission and processing of information about the object;
supplies employees of different levels of information for the
implementation of the management function.

Information technology is based on the implementation
of information processes. Their diversity requires the allocation
of basic, typical of any information technology. The basic

11

technological process is based on the application of standard
models and tools. Some of the basic technological processes
are:

- receiving information;

- transportation of information;

- information processing;

- information storing;

- representation and use of information.

The process of obtaining information is related to the
transition from the real representation of the subject domain to
its description in a formal way and in the form of data
representing this presentation.

In the process of transportation, the distance
information is transmitted in order to make the exchange faster
and organize a quick access to it, using different ways of
transformation.

The process of information processing is used for
obtaining some "information objects" from other "information
objects” by performing some algorithms; it is one of the main
operations while operating with information, and is a major
factor in increasing its scope and diversity.

Information storing process involves the need for
accumulation and long-term data storage, ensuring their
relevance, value, security, availability.

The process of representation and use of information
is aimed at solving the problem of access to information in a
user friendly form.

Basic information technologies are built around the
basis of basic technological operations, in addition including a
number of specific models and tools. This type of technology is
focused on solving a certain class of tasks and is used in
specific technologies as a separate component. Among them
are:

- multimedia technologies;

12

- geoinformation technologies;

- information security technologies;

- CASE-technologies;

- telecommunication technologies;

- CALS-technologies;

- artificial intelligence technologies .

The specifics of a particular subject area are reflected in
specialized information technologies, for instance,
organizational management, technology process management,
automated design, studying, and others. Among them the most
progressive are the following information technologies:

- organizational management (corporate information
technologies);

- in industry and economics;

- in education;

- automated design.

CASE-technologies (Computer Aided Software
Engineering) is a kind of "technological snap" that allows for
automated design of information technology. Information tools
provide an effective representation of the subject area; these
include information models, classification and coding systems
(all-Ukrainian, areal), etc. Mathematical tools include models
for solving functional problems and the model of organization
of information processes that provide effective decision-
making. Mathematical tools are automatically converted into
algorithms that ensure their implementation. Technical and
software tools set the level of information technology
implementation both during their creation and implementation.

CALS- technology is designed to unify and standardize
the specifications of industrial products at all stages of its life
cycle.

This way, specific information technology is
determined by the compilation and synthesis of basic
technological operations, "branch technologies” and means of

13

implementation. The implementation of information systems
improves the efficiency of production and economic activity of
the enterprise due to not only the processing and preservation
of information, automation of routine work, but also
fundamentally new methods of management. They are based
on designing the actions of specialists during their decision-
making process (methods of artificial intelligence, expert
systems, etc.), using modern telecommunication facilities (e-
mail, teleconferencing), global and local computer networks,
etc.

Information systems are classified in the area of
application as follows:

- C scientific research;

- IC automated design;

- IC organizational management.

Information technology of product design

The need of implementation of IT for product
manufacturing can be explained by the requirements for
reducing the design and preparation time for the production of
new and upgraded products, the cost of design and production,
the cost of long-term after-sales service . Besides, IT is
required for the restructuring (re-engineering) of enterprises in
accordance with modern requirements for improving the
quality and competitiveness of products, restoring old markets
and entering new markets. The following IT are widely used at
the stages of the life cycle of electronic tools:

- CASE (Computer-Aided Software / System
Engineering) - technologies,

- ERP (Enterprise Resource Planning), which provide a
solution to a wide range of tasks of resource planning and
management of enterprises.

- CRM (Customer Relationship Management) systems
as a set of applications or as an add-on over ERP. In CRM-
systems, the emphasis is on the relationship between the "client

14

company" and, above all, the maintenance of old customers by
taking into account their individual needs and characteristics.

1.2. SYSTEM (STRUCTURAL) LEVEL OF COMPUTER
DESIGN OBJECTS

The essence of the design process

The essence of the design process of products is to
design constructions and technological processes for the
production of new tools, which, with minimal cost and
maximum performance efficiency of the functions assigned to
them in the necessary conditions.

Designing any technological object means creating,
transforming and presenting in an accepted form of the image
of this not yet existing object.

The image of an object or its component parts can be
created in the imagination of a person as a result of the creative
process or generated in accordance with certain algorithms in
the process of interaction between man and computer. In any
case, engineering designing begins with the expressed need of
society in some technical objects.

Designing includes the development of a technical
proposal and/or a technical task (TT) that reflects these needs
and the implementation of the TT in the form of project
documentation. Typically TT is presented in the form of some
documents, and it is the initial (primary) description of the
object. Generally, The result of the design is a complete set of
documentation, which contains sufficient information for the
manufacture of the object in the specified conditions. This
documentation is actually a project, or rather a definitive
description of the object.

So, designing is the process of obtaining and
transforming the initial description of an object into a final
description based on the implementation of a complex of
research, design and design works.

15

Designing of complex objects is based on the
application of ideas and principles set out in a number of
theories and approaches. The most general approach is a
systematic approach, the ideas of which are imbued with
different methods of designing of complex systems.

Projected products distinguish the following design
tasks by the degree of novelty:

- partial modernization of the existing product (change
of its parameters, structure and design), which provides a
relatively small (several dozens of percents) improvement of
one or more quality indicators for the optimal solution of the
same or new tasks;

- significant upgrade, which provides significant
improvement (by several times) of quality indicators;

- the creation of new products based on new principles
of operation, design and production for a sharp increase (on a
few levels) of quality indicators in solving the same or
substantially new tasks.

Designing is a complex multi-stage process in which
large teams of specialists, entire institutions and research and
production associations, as well as the organization of
customers who are to operate the developed equipment, can
participate.

The design stages consist of separate design
procedures, which end with a partial design decision. The
analysis and synthesis of descriptions of different levels and
aspects is typical for designing procedures.

The idea behind the analysis procedure is in
determining the properties of a given (or selected) description.
The analysis allows to assess the degree of satisfaction of the
project solution with the given requirements and its suitability.

The idea behind the synthesis procedure is in creating a
design solution (description) according to the given
requirements, properties and restrictions.

16

Analysis and synthesis procedures in the design process
are closely related, since both of them are aimed at creating an
acceptable or optimal design solution.

A typical design procedure is optimization, which
leads to an optimal (according to a certain criterion) design
decision. Optimization provides a creation (synthesis) of the
design decision, but includes a stage by stage evaluation of the
characteristics (analysis).

Project procedures consist of separate project
operations. Project procedures and operations are performed in
a certain sequence, called the design route. Design paths can
begin with lower hierarchical levels of descriptions (ascending
design) or from the upper (downward design).

There is a deep interconnection between all stages of
the design. Thus, the definition of the final design and
development of the entire technical documentation can often
not be completed before the end of the development of
technology. A correction of the principal schemes, structure of
the system and even output data may be required in the process
of technology designing and development. Therefore, the
design process is not only multi-stage, but is also repeatedly
corrected as it performs, which means that the design is
iterative.

Modern design is based on the systematic approach and
the improvement of design processes with the use of
mathematical methods andcomputers, complex automation of
labor-intensive and routine design work, the replacement of
layout and model simulation by mathematical modeling, the
use of effective methods of multivariate design and
optimization, as well as improving the quality of design
management.

17

Methodology of a systematic approach to the task of
the design of complex systems

The system approach allows finding the optimal, in
the broadest sense, solution of the design task due to the
comprehensive, holistic consideration of both the projected
product and the design process itself, and can lead to genuinely
creative innovative solutions, including large inventions and
scientific discoveries.

The main means of automation of design are the ECD
(electronic counting devices) and other technical devices, that
create the necessary basis for the full realization of the
potential opportunities of the system approach. The system
approach is becoming more widespread in designing and
managing.

The point of the system approach is that the object of
design or management is seen as a system, that is, as a unity of
interconnected elements that combine into a single thing and
operate in the interests of realizing a single goal. The system
approach requires examining each element of the system in the
relationship and interdependency with other elements,
revealing the patterns inherent in this particular system,
identifying the optimal mode of its operation.

A systematic tool for implementing a systematic
approach to the study, design or management of a complex
process is called system analysis, which means a collection of
techniques and methods of studying objects (processes) by
presenting them in the form of systems and their further
analysis.

The design process is a multi-layered hierarchical
process for optimizing solutions in each layer from the point of
view of the a system approach to design automation. The
principle of hierarchy in design and management, as well as the
principle of integrity, necessitate the construction of a system
of criteria when partial criteria are used to solve problems of

18

the lower level of management (subsystems), logically match
with the criteria used at a higher hierarchical level. The source
values are compared in the process of designing and managing,
that is, the result of the system's functioning with the criterion.

Thus, the system is a rather complex object, which can
be disassembled into constituent elements or subsystems.
Elements are informationally related to each other and to the
environment surrounding the object. A set of relationships
forms the structure of the system. The system has an
algorithm for functioning, aimed at achieving a certain goal.

System approach to the task of automated design of a
technological process

During analysis of complex processes, when it is not
possible to find internal connections in the system, the
principle known in the cybernetics a the "black box" is used.
This idea lies in the fact that, without having information about
the being, about the internal structure of the process, only the
dependence of the output variables from the inputs are used for
its mathematical description.

The concept of a "black box" refers to the basic
concepts of cybernetics, helping in the study of the behavior of
systems, that is, reactions to various external influences,
abstract from their internal order. Many systems, especially
large ones, are so complex that even with full information on
the state of their elements, it is virtually impossible to link it
with the behavior of the system as a whole. In these cases, the
presentation of such a complex system in the form of some
"black box", functioning in the same way, makes the
construction of a simplified model easier.

Analyzing the behavior of the model and comparing it
with the behavior of the system, a number of conclusions about
the properties of the system itself can be made. When they
coincide with the properties of the model,working hypothesis

19

about the predicted structure of the researched system can be
made.

Let's assume, that the input of the system can be
influenced by X, and the output indicators have a P quality.
Looking at the behavior of this system for a long time and, if
necessary, performing some active experiments on it, that is,
changing the input in some way, a certain level of knowledge
of the properties of system can be achieved, in order to be able
to predict a change in its initial output values for any given
change in the input. The method that uses the "black box™ is
widely used to solve the problems of modeling controlled
systems (especially in the study of complex technical objects)
in cases where the behavior of the system rather than its
structure is of interest. Statistical methods of optimization are
usually the most suitable in these situations, since neither the
technologist, nor the ECD are capable of taking into account
the total effect of many different factors, often associated with
complex dependencies, in a number of cases.

The methodology of system analysis is quite universal
and can be used both for the design process as a whole, and for
individual phases and stages of designing. During the
transition of general design, the content of goals, and decisions
will change on certain stages, but the overall sequence of
analysis stages will remain.

Traditionally, the design of complex technical systems
is divided into following phases or stages of development:

- technical task for the designed object;

- scientific research work;

- sketch design;

- technical design;

- working design;

- technology of manufacturing and testing of the
designed object (prototype or batch);

- making corrections (if necessary).

20

Technical task. At the stage of development of the
technical task (TT) the following tasks are solved: the search
and selection of the necessary scientific and technical
information (about prototypes, patent data, etc.) from the
corresponding database.

The new scheme (device) can either have or not have
analogues. In the case if analogues exist, you can proceed to
the design stage of the device (system). But, as a rule, there is
no analogue or the developed system has to exceed the known
analogue, therefore a SRW (scientific research work) is
required; an analysis of the selected information and
formulation of technical requirements for the projected object
is formulated on its basis. At this stage, information search and
document processing operations can be automated. Certain
parts of the auxiliary actions of information analysis can be
automated as well, for example, grouping them according to
certain features, selecting the least or most compatible with
each other options etc. In addition, some questions are solved
and made up in specific documents, for example: the transfer
of functions performed by the device; development of the
structural scheme of the device; definition of the characteristics
of individual nodes; development of algorithms of executed
operations.

SR stage. This is a pr-design stage. This is one of the
most important stages. In order to solve the tasks at this stage, a
usage of ECD is required. These are the so-called automated
systems of scientific research (ASSR). At the stage of SRW,
the following tasks need to be solved: formulation of the
criteria of quality and management; management of scientific
experimentation; carrying out a passive or (and) active
experiment with the processing of their results; development of
mathematical models and their identification by experimental
data; working out the technological processes of manufacturing
of objects in order to find norms for parameters that provide

21

optimal output quality indicators; the formation of a
generalized quality criterion, which includes all the partial
quality indicators. A generalized criterion is than taken as the
target function while solving the optimization problems;
solving the optimization problems. The variation of the input
and control parameters of the technological process in the
framework of the established norms (accesses) is carried out in
order to obtain the optimal quality criterion; a search for a
fundamental possibility of building a system; a development of
new technical means, including means of control and
measurement.

A Technical Proposal (TP) is issued as a result of a
SRW. CAD programs, methods and algorithms can b applied,
even though the SRW is an independent stage.

Stage of sketch design. The following tasks are being
solved at this stage: a sketch of a projected system (device)
with a detailed development of its capabilities is developed, a
search and selection of more detailed information is being
carried out. Based on the analysis of the received information,
the preliminary design decisions are taken and the first project
documents are prepared. Various calculations are produced for
the development of design documents, the content, the volume
and complexity of which depend on the characteristics of the
object being projected.

The works of this stage are mostly being automated,
and their automation gives the greatest technical and economic
effect by optimizing design decisions. The automation of these
works is achieved through the application of optimization
mathematical methods.

Stage of the development of the object of the technical
project. At this stage, the decisions, made in the sketch design ,
are being detailed and clarified, and the new more precise
project documents are created. A search, selection and the
analysis of the output information (mainly technical and

22

techno-economical) is carried out once again. Numeric
calculations are carried out as well, but from other, more
accurate methods. These works can be largely automated. Most
of the documents formed at the stages of sketch and technical
design are used only for working design and are not included in
the working and operational documentation. The information
generated in the considered stages serves as the source for the
working design. This means that it is expedient to create banks
of temporary information based on the projected object in the
conditions of automated design.

Working design. At the stage of working design, the
main type of work to be done is the arrangement of design
solutions in the form of drawings, specifications for them and
operational documentation for the object. Modern means of
computer technology allow to fully automate the execution of
drawings and specifications, and to a certain extent - the
formation of operational documentation. If the design
automation system carries out not only the production project
but also the design of the technology, then it is advisable not to
make drawings and specifications in the traditional form, but to
transfer information to the designers-technologists on the
computer carriers as a database of the projected object.

Designing technologies for manufacturing of a
designed object. At this stage, traditionally, a work in the
process of technological preparation of manufacturing of a
product or its components and parts is performed at the
enterprise-manufacturer. When designing the technology, the
following tasks are carried-out: search and selection of and
output information (about the object to be manufactured; about
the technological equipment of the enterprise; about the
technological and labor standards); analysis and processing of
data in order to determine the processing routes, the sequence
of technological operations and their modes of operation, the
needs of the instrument and measuring equipment, the creation

23

of a special tool; arrangement of the corresponding
technological documentation.

The works referred to in the Technical Task and
Technical Project are identical to many operations during the
design of the product. The peculiar design of technologies
requires original calculations and solutions for various types of
technological operations. Nevertheless, the methods of
formalizing most of these works exist, therefore, they can be
automated.

Automation of information processing of operations
and the management of processes of information usage at
all reviewed stages of designing is the actual point of the
functioning of modern CAD.

1.3. PRINCIPLES OF CONSTRUCTION AND
FUNCTIONING OF CAD

Principles of functioning CAD

When creating and operating CAD using the following
principles:

1. The principle of system unity is that, when creating,
functioning and developing CAD, connections between
subsystems must ensure the integrity of the system.

2. The principle of inclusion ensures the development
of CAD on the basis of requirements that enable this CAD in a
higher-level CAD.

3. The principle of development means that CAD
should be created andfunction with the additions, upgrades and
updates of subsystems and components.

4. The principle of complexity ensures the
interconnection between the design of elements and the entire
object at all stages and stages of design.

5. The principle of informational unity is the use in
the subsystems, facilities and components of the CAD system
of uniform conditional notations, terms, symbols, problem-

24

oriented languages, methods of making information
conforming to accepted normative documents.

6. The principle of compatibility is that the
simultaneous operation of all subsystems of CAD should be
ensured while maintaining the openness of the system as a
whole.

7. The principle of standardization and inventory is
to unify, standardize the subsystems and components that are
invariant to the industries and objects being designed.

8. The principle of the dialogue is that there is
simultaneous use by the designer of manual, automated and
automatic project operations, its active influence in the process
of design solutions.

9. The principle of accumulation of design
experience is the availability and replenishment of the archive
of design procedures and design decisions, mathematical
models (MM), algorithms, theoretical and experimental data,
etc.

Composition and structure of CAD

Structural components of CAD, which are strictly
related to the organizational structure of the project
organization, are subsystems, in which, with the help of
specialized complexes of the means, the functionally
completed sequence of CAD tasks is solved.

CAD are devided to:

Designing subsystems that have object orientation and
implement a separate stage (design stage) or group of directly
related project tasks. Example: sketch design of products,
design of body parts, etc.

Servicing subsystems have a common system use and
provide support for the functioning of the designing
subsystems, as well as the design, transmission and output of
the results obtained therein. Example: automated data bank,
documentation subsystem, and graphical input / output.

25

The subsystem consists of components of CAD,
combined by a target function common to this subsystem, and
which ensure the functioning of this system.

A component is an element of support that performs a
separate function in the subsystem:

Methodical support - documents in which the
composition, the rules for the selection and operation of design
automation facilities are displayed.

Linguistic support - design languages, terminology;

Mathematical support - methods, mathematical
models, algorithms;

Software - documents with text programs, programs on
carriers and operational documents;

Technical support - means of computing and
organizational engineering, data transmission, measuring and
other devices;

Information support - documents describing standard
project procedures, typical decisions, typical elements, etc .;

Organizational support - provisions, instructions,
orders, staff schedules and other documents that regulate the
organizational structure of CAD divisions.

General characteristics, definition of Technical
support of CAD

Technical support of CAD is a complex of technical
means , on the basis of which the entire automated design
process is physically implemented: from input and preparation
of output data to obtaining the finished project documentation.

In essence, technical support of CAD is the material
basis of automated design and, together with the software
(CAD software) creates the physical environment in which the
other types of CAD support (mathematical, informational,
linguistic, etc.) are implemented.

It should be noted that the problem of selecting
technical support of CAD for any particular CAD is a very

26

important and responsible step in the design or operation of this
CAD. This is due to the fact that the technical support of CAD
with software CAD is the most expensive component of CAD
and largely determines the effectiveness of the whole system as
awhole.

Requirements for technical support of CAD

Requirements for technical support of CAD can be
divided into four categories: system; functional; technical;
organizational and operational.

System requirements determine the spectrum of
properties, parameters and characteristics of the technical
support of CAD as a technical system. System requirements for
technical support are following: efficiency, universality,
compatibility, flexibility and openness, reliability, accuracy
(reliability), security, the possibility of simultaneous operation
of a sufficiently wide range of users, low cost.

Functional requirements determine the properties of
the technical support of CAD in terms of performance CAD
functions. They are nominated for CAD and should provide:
implementation of mathematical models; tasks of decision
making and design procedures; archives, libraries of design
decisions and typical elements; data retrieval system, providing
visual information; work with graphic images and models;
parallel development of individual nodes; interconnection of
stages of designing; work of the user both in batch mode and in
dialog mode with the ability to switch from one mode to
another at any stage of designing; documentation of design
results; delivery of results to technological equipment
(recording of the program for equipment, etc.).

The technical requirements determine the parameters
and characteristics of the technical support of CAD and
individual technical support in the functioning of CAD and
expressed in the form of quantitative, qualitative and
nomenclature values of characteristics and parameters. The

27

main characteristics and parameters include the following:
performance, speed of devices, information coding system;
capacity of storage devices, types of data carriers; Types of
interfaces for hardware connectivity.
Organizational-operational requirements include
technical aesthetics, ergonomics, safety (labor protection),
organization of operation and maintenance of the CAD system.
The most general requirements (mostly systemic and
functional) lead to TP on CAD. More detailed and specified
system and functional requirements, as well as technical and
organizational-operational requirements, indicate the technical
problems of complex facilities.
The main components of technical support of CAD
Currently, in the technical support of CAD, it was
decided to allocate two groups of technical means (fig. 1.3.1):

Technical support

['
General purpose intended for the| [Problem-oriented complexes of techmical

creation of CAD of different classes| [means with specialized software: ARM-
and configurations, and the| |automated workplace; IRS-engineering
construction jof specialized such ag| [Workstation; RMP - work place of the

ARM, IRS aiid others. designer

Functional groups of technical means

technical technichl technical technichl techitical
means for| |means for| |means for| | means for means for
program preparing reproducing and| |archive of] [data

data and entering| |documenting design transmissi
processing data data decisions on

Fig. 1.3.1.The main components of technical support of CAD

28

- technical means of general purpose, intended for
creation CAD of different classes and configurations and the
complexing of specialized technical means type of ARM, IRS
and others;

- problem-oriented complexes of technical means with
specialized software: ARM-automated workplace; IRS-
engineering workstation; RMP - work place of the designer.

.4. MATHEMATICAL SUPPORT FOR COMPUTER
DESIGN
General characteristics

The mathematical support of automated design is called
the combination of mathematical models of design objects, as
well as methods and algorithms of operations and procedures.

The generalized structure of the MS CAD can be shown
in the following form (See Fig.). As can be seen from this
scheme, the whole set of mathematical models of objects,
which are projected by the nature of their properties, are
divided into functional and structural models.

Functional models are intended for the display of
physical processes occurring in the object during its operation
and establish connections between input, output, control and
external parameters by means of functional dependencies,
functionals, operators, probable dependencies, etc. Functional
mathematical models (MM) together with some criteria for
assessing the quality of the object's operation form the basis of
a functional description of the design object (functional
aspect).

Structural MM are designed to reflect the structural
properties of the design object. Distinguish structural MM:
topological and geometric.

Topological MM cover the composition and connection
of elements of the design object. They are most often used to
describe objects that consist of a large number of individual

29

elements when solving tasks of attachment of constructive
elements to certain spatial positions (example of the problem:
layout, tracing of connections), or to relative moments of time
(for example - in the development of technological processes).
Topological models can take the form of graphs, tables, lists,
matrices, etc.

Geometric MM reflect spatial relationships and forms
of the projected object and its component parts. Geometric
MMs can be expressed by a set of equations of lines and
surfaces, graphs and lists, etc. On the basis of topological and
geometric MM are morphologicappointment of the design
object.

he effectiveness of CAD, in many respects, is
determined by the quality of mathematical support, since the
choice of MS often determines the quality and design terms, as
well as costs for it.

Generalized structure of mathematical support of CAD

Generalized structure of mathematical support of CAD
is shown on the figure 1.4.1.

The requirements for accuracy, reliability, economy,
versatility and adequacy are put forward to the MM.

1. Accuracy: estimated by the degree of coincidence of
real and estimated parameters of the object. The evaluation is
carried out using data MM and algorithm. Let the quality of the
design object displayed in MM are estimated by the vector of
output parameters Y = (Y1, Y2, ... , Ym). Then, knowing the
actual and calculated using the MM value of the j-th output
parameter through Yj, and Yjmea , respectively, define the
relative error E; of the calculation of the parameter Y;as

Ej = (Yj mod - Yj v) / Yj V-

The estimate € = (gy, €2, ... €m) IS Obtained. If necessary,
the reduction of this estimate to the scalar use of any norm of
the vector ¢, for example

evw=|lel|=max g . (6.2) je(l:m)

30

Mathematical support
of CAD

Mathematical models of Mathematical methods
obiects and algorithins of design
designing operations and procedures
Functi- Struchy-
models models
/
Grite- Tepgle| |Geeme Methods Methods Methords
58 sl tig and and and
for madels| | models algorithms algorithms algorithms
for project for the i
o6

analysis synthesis of the
ofthe design
design object
object

of design description

objest

Fig. 1.4.1.Generalized structure of mathematical support of
CAD

2. Reliability: it is necessary to use such MM and
algorithms which have strict justification of use.

3. Efficiency of MM is characterized by the cost of
computing resources (by the cost of machine time T and memory
M) for its implementation. The less T and M, the more
economical the model. Instead of the values of T and M, which
depend not only on the properties of the model but also on the
characteristics of the computer, you can use other values: the
average number of operations that are performed in one call to the
model, the dimension of the control system, the number of
internal parameters that are used in the model.

4. Versatility: involves the use of objects of the same type
without significant alteration of MM and algorithms.

31

5. Adequacy of the MM is the ability of the MM to
display properties with an error that would not be greater than the
given one. Since the output parameters are functions of the
vectors of the parameters of the external Q and internal X, the
error g depends on the values of Q and X. As a rule, the internal
values of the MM are determined from the condition of
minimizing the error g; in some point Q, of the space of external
variables, while using the model calculated vector X with various
values of Q. Adequacy of a model, as a rule, takes place only in a
limited field of change of external variables-area of adequacy
(VAA) of a mathematical model:

OA ={Q | em < 8},

where 6 > 0 - the given constant is equal to the
maximum permissible error of the model.

Functional description of design objects

Functional models of the design object or its elements
are dependencies that connect the output characteristics with
the input, internal (controllers) and external parameters. In the
general case, functional models are written in the form of a
ratioY = F(t, s, X, Q),

where Y = (Y1 V2, Vs ... Yn) - vector of output
parameters;

X = (X1, X2, X3, ... Xn) - vector of internal (controlled)
parameters;

Q =(qy, g2, g3, ... Qn) - vector of external parameters;

t - time;

S =(x v, z) - vector of spatial coordinates.

The construction of a functional MM object is possible
in the case when the morphological description of the design
object is already executed, that is, the description of the
composition of its elements and their interaction.

Classification of functional models

1. Depending on the method of construction: -
theoretical;

32

- Experimental.

2. In the form of links between the parameters of the
model: - analytical,

- algorithmic.

3. Depending on the consideration of random factors:

- deterministic;

- scholastic.

4. Depending on the type of given parameters of the
model: - constant;

discrete

5. Depending on the features (type) of the equations
included in the model: - linear; nonlinear

6. Depending oncounting or not taking into account
time: - static; -dynamic

7. In relation to the hierarchical level: - micro-models; -
macromodels; - metamodels.

Kinds of functional models

1. Mathematical models in the form of differential
equations in partial
derivatives (distributed models). Such models reflect processes
that
proceed in the general case in 3-dimensional space and in time
they are
have the following look:
®(S, X,Y,Q,0Y/0S,82Y/0S% ... 1) =0,
where d- communication operator between variables and their
derivatives. Examples of Distributed Models:

- thermal equation for simulation of the thermal mode
of the engine of internal combustion;

- diffusion equation for simulation of cooling processes;

- the equilibrium equation, when simulating tasks of
statics and dynamics of machines.

2. Mathematical models in the form of ordinary
differential equations (concentrated models).

33

y(aY/ot, X, Y,Q,t)=0.

Examples of concentrated models:

Differential equation of the curved axis of the beam on
an elastic basis during the mo-division of the stressed-
deformed state of the machine nodes, etc.

3. Mathematical models in the form of transcendental
and algebraic equations:

F(Y, X, Q, t) = 0 - transcendental,

4. Mathematical models in the form of logical
equations: used in automation systems, relays, etc.

5. Mathematical models of stochastic processes - mass
maintenance systems (computers, databases, shops, gas
stations, etc.).

Methods of constructing functional models

By their very nature, MM is divided into theoretical and
experimental (empirical) MM. All other classifications are
derivatives from the above. Let's consider the methods of
constructing these MM.

Methods of constructing theoretical functional
models:

In order to obtain theoretical distributed mathematical
models, fundamental physical laws are used: laws of mass
conservation, energy, amount of motion. Then they are
supplemented by boundary conditions and MM -is ready

The basis of obtaining lumped models is also known
laws, principles and hypotheses of a less general nature: the
basic law of the dynamics of the translational and rotary
motion, the principle of velocity generation, the Hooke's law,
the hypothesis of plane cross sections, and so on.

Methods of constructing experimental functional
models

To obtain static models, we use the mathematical
apparatus of the theory of experiment planning, in which MM

34

is obtained in the form of an algebraic equation of the form Y =
F (Q) - the response function.

1.5. EXPERIMENTAL MATHEMATICAL MODELS
OF DESIGN OBJECTS
Planning an experiment

Theoretical studies play an important role in the process
of knowing the objective reality, since they allow deeply
plunge into the essence of natural phenomena, create a
scientific picture of the world.

The solution of problems by mathematical methods is
carried out by mathematical formulation of the problem, the
choice of a method for studying a mathematical model,
analysis of the result.

The mathematical formulation of the problem appears
in the form of numbers, geometric images, functions, systems
of equations, etc.

The mathematical model represents a system of
mathematical relations - formulas, functions, equations that
describe the object being studied.

Stages of Mathematical Modeling:

- statement of the problem, definition of the object and purpose
of the study, task of signs of studying objects, etc .;

- choice of type of mathematical model (often several models
are constructed and the best is chosen);

- description of the transformation of input signals into the
output characteristics of the object (for example, using
algebraic dependencies);

- studying the quality of the model.

Recently, there is a continuous expansion of the
application of methods of mathematical planning of the
experiment. These methods are successfully used to increase
the efficiency of experimental studies, to find optimal
technological regimes of production processes, to choose the

35

design parameters of a product, the composition of a
multicomponent mixture, etc.

In experimental studies, they deal with the object of
research. Objects of research can be devices, technological
lines, various products, etc.

A rather common model of a research object is the
cybernetic system depicted in the diagram (fig. 1.5.1).

—> —>
—» Modelofa —»
research

Fig. 1.5.1. Model of a research

For such a system, inputs are distinguished - controlled factors
X1, X2, ..., Xp, corresponding to the effects on the system, and
outputs yi, Yz, ..., Yn, (numerical characteristics of the research
objectives) - parameters (criteria) of optimization

Each factor can take in the experiment one of several values,
called levels. A fixed set of factor levels determines one of the
possible states of a cybernetic system. At the same time, this
set represents the conditions for conducting one of the possible
experiments.

Each fixed set of factor levels corresponds to a certain
point in the multidimensional space of factors, which is called
factor space.

Experiments can not be implemented at all points of the
factor space, but only at points belonging to the permissible

domain of the factor space G (fig. 1.5.2).
X2 A

%0 b

1
L »

X1(0 Xl

0
Fig. 1.5.2. Factor space fo experiment
36

The system responds differently to different sets of
factor levels. However, there is a certain correlation between
the levels of factors and the response (feedback) of the system.

Function y that connects optimization parameter with
factors is called the response function, and the geometric image
corresponding to the response is the response surface (fig.
1.5.3).

YAX L, X2)

Fig. 1.5.3. Response surface

The researcher is not aware in advance of the appearance of the
dependences ;. He has to get approximate equality:
9,‘ = l/}j (X0) X000 %)

1=1,2,...,1

according to the experiment.

The experiment must be set so that with a minimum
number of experiments, varying the value of independent
variables in specially formulated rules, construct a
mathematical model of the system and find the optimal values
of the properties of the system.

37

The choice of factors, optimization parameters and
models takes place taking into account the purpose of the
study.

Distinguish quantitative and qualitative factors.
Quantitative ones can be measured, weighed, etc .; qualitative -
no, but for them it is possible to construct a conditional scale to
distinguish factor levels.

On the other hand, factors can be controlled and
uncontrolled.

Under the control are the following input variables
(factors) whose values in the experiment are known at each
time point. Thus, in the study of the technological process, all
variables that determine the state of the process and the values
of which are recorded using the appropriate measuring devices
are controlled. Controlled variables, in turn, can be divided into
managed and unmanaged. Managed are called variables
(factors) for which a purposeful change of their values is
possible during the experiment. Variables for which such a
change is not possible are called unmanaged.

Uncontrolled factors include such input variables whose
values can not be determined during an experiment or those
that have an impact on the results of the experiment, but even
the existence of which the experimenter does not have
information.

The characteristic of the goal of an experiment,
quantified, is called an optimization parameter (optimization
criterion, target function).

To the optimization parameter put forward a number of
requirements:

- efficiency in terms of achieving the goal (that is, the
optimization parameter should evaluate the functioning of the
system as a whole, rather than its individual subsystems);

- universality (the ability to comprehensively characterize the
object of research);

38

- a quantitative expression in one number;
- the presence of physical sense;
- Simplicity and affordability of the calculation.

System properties can be described by different models.
To select a model, we formulate requirements:
- adequacy (ie the ability of the model to predict the results of
the experiment in some area with the required accuracy);
- content (ie the model should well explain the already known
facts, identify new ones and predict the future behavior of the
system);
- simplicity (this is a natural requirement: the model is simpler,
therefore, in other equal conditions, it is better).

Depending on the task setting, different models can be
used. Often, explicit functional dependences of the form are
used:

Y= F (X, X0 X000 By Boree Bns €) (1.5.1)
where f - some function, called regression function;
Xis Kyyeen X - independent variables (factors);
By Boy- B~ unknown parameters; & - is a random

component. The latter is introduced into the model when the
data show a noticeable variation of a random nature. It is often
assumed that ¢ is an additive in model (1.5.1), that is, (1.5.1)
takes the form:

Y= (X, %0 X5 Bry By B) + € (1.5.2)
The relations (1.5.1), (1.5.2) are called regression models
To independent variables (factors) Xi, X5,..-X are given

one or another value, while experimentally obtaining the
corresponding values of Y . Then (5.2) goes into the system of

relations from which the parameters B, 5,,...0, are
determined. Due to the presence of a random component, the

39

parameters B, S,,...53, can only be estimated (and not

precisely defined). In this case, the estimates bl, bz,---bm of

the corresponding parameters are obtained, and in reality,
instead of the model (1.5.2), they operate with an approach

Y toit:
y=f(x, %, X,,0,b,,..0,)
If a function fis a polynomial, then bb,,..b are

called regression coefficients, and the function y takes the
form:

Y =Dy + D X+ D bxX; +... (1.5.3)
i i

If a model is chosen, that is, the type of the dependence
y from x is chosen and the corresponding equation is written,
then it is necessary to plan and carry out an experiment for the
estimation of the numerical values of the coefficients of this
equation in the research area of the factor space.

Evaluation of regression coefficients by the method

of least squares

According to the results of experiments on the object of
study the certain kind of mathematical model can be obtained.
In particular, it can be a regression model with the required
function as a polynom of a certain order - the so-called
polynomial regression model.

The quality of the approximation regression model to
the real object depends not only on experimental data, but also
upon the method of model building. The method of least
squares is often choosed for this purpose.

Found equation is exposed to statistical analysis
(audited sustainability variance at different points of phase
space, the significance of the coefficients, the adequacy of
regression model). This is called a regression analysis.

40

The method of least squares

Let n experiments are performed, in each of which
vector of independent variables (factors) x =(Xi,...Xp) has
certain values, and thus some values of the dependent variable
y are obtained. Let x' (x 1,---, Xp) set of values of the
dependent variables that were given to them in the i-th
experiment, y; - the corresponding values of the dependent
variable (i = 1,2, ..., n). According to the method of least
squares (MLS) as an estimation of vector parameters £ =
(B, ...fPm) is taken vector b = (by,..., by) (@another designation -

B =By Bm)) Where the sum
S(6)= %[y~ 1 o

takes a minimum value for g eR™, where R™ - m-dimensional
Euclidean space.

If the regression function f is differentiated by the
parameters (fi,...,0m), then the necessary condition for a
minimum of S(p) is the fulfillment of equalities

(1.5.4)

oS(p) ~0, j=12,..m. (1.5.5)
0B,
The system (1.5.5) consists of equations whose number
equals the number of unknown of system - the

coefficientsb,, b, ,..., b, . Such system is called the system of

normal equations or the normal system.

Solution of the problem of minimizing the function S(p)
here will be given for the particular, but a very important case
of model (1.5.5). Specifically, we assume that p = 1, so the
vector of independent variables x is a scalar variable. Further
will be considered that m = 2. Besides, instead of signs i, /%
for dependance parameters will be used more widespread
designation S, 1. Will be also made a very important
suggestion that f is a linear function of the parameters /o, fi.

41

We will consider in function f variable x is only in degree 1.
Thus, focus will be on such view of regression function:

fX)= 6o+ X (1.5.6)
and thus we will study following particular case of model
(1.5.5):

Y=o+ [fiX+e, (1.5.7)
where, in accordance with the above, x and y - respectively, the
independent and dependent variables, f, A - model
parameters, € - random component of model.

Dependence (1.5.7) called the simple linear regression.

Let's go directly to the problem of estimation
parameters fo, [by the experimental data. Let the
independent variable x in experiments takes values Xi,...,X,
(last applied designation somewhat different from above -
where X1, Xp,... denote different independent variables, but now
only one independent variable, with xi,...,X, is its values; in
previous designations we had to write x;%,...,x,"), and the
dependent variable y - respectively, yi,...,yn. In this case the
problem of minimizing the function S(f) becomes:

S(B)=S(bo,)= ’zq': [yi _(ﬁ0+ﬂ1xi)]2 — min, (1.5.8)
i=l

where the minimum is taken over all value /o, 1 for fixed
X1,...,Xn and Y1,..., Yn. Let solution of the problem (8.5) be
(bo, b1),, and appropriate assessment regression function (8.3) -
7, l.e.

¥ =3(X) =bg + by x. (1.5.9)

The following figure shows schematically the linear
regression and a set of experimental points (x;, yi). Also
depicted vertical segments that connect these points and the
line (fig. 1.5.4).

It is easy to understand that in any way of drawing of a
straight line in order to approximate relationship between x
and y will occur deviation of experimental points from this line
(if all these points not lie on a straight line, but the latter almost

42

never happens). It is convenient to measure these deviations as
differences ordinates of corresponding experimental points and
points on straight at values X = Xp,..., Xn, 1.e. algebraic
values of vertical segments shown on fig. 1. If the
approximation is performed according to the MLS, then the
sum of the squares of the lengths of these segments will be the
lowest possible.

A

Fig.1.5.4. Geometric interpretation of the method of least

Clearly, that g, and S, are, respectively, the angular coefficient
and constant term (a segment on the vertical axis at x = 0) line,
and bl and bO - their estimated values, obtained from
experimental data. This last is, accordingly, the angular
coefficient and constant term in line equation (1.5.9).

To solve the problem (1.5.8) let's calculate partial derivatives of
function S = S(f,) by fo, 1. We have

n
0S10pp=-2 3 (yi~fo—Bux),

i=1

n
0S/0p=-2 .lei Yi— fo— B Xi).
1=

Equating the found derivatives to zero and performing
appropriate simplification we arrive at a system of two
equations, where are unknown parameters f, fi:

Pon+ fLEXi =2,

LoIxi+ BE Xt =2 X Vi, (1.5.10)

43

where to facilitate entry summation index is omitted
(hereinafter in similar situations mark ¥ means summing over
all possible values of the summation index, in this case from 1
to n). This system is partial, the system of normal equations
(1.5.5) and has the same name. You can strictly prove that
normal system solution (1.5.10) and indeed the solution of the
problem of minimizing (1.5.8).

The normal system of equations (1.5.10) is always
compatible, regardless of whether it's determinant is O or not.
Equality to zero of determinant can happen when, and only
when all the observations are conducted only in one point x. In
this case, this system has many solutions, each of which can be
found from the equation

fon+ Ainx =2y, (1.5.11)

The main case is one in which the determinant of the
system (5.10) is not equal to 0. In this case, the system has a
unique solution for which (for some further goals) is
convenient to introduce the following notation:

Sxy = 20— X)(Yi—) Sux = 26— X)% Syy =2(yi— ¥)’
where, as above, the summation index is omitted. Let's also
indicate x and) the average of the independent and
dependent variable respectively:
V= (yrt...tyn)/n, X = (Xat...+ Xa)/n.
Then we have the following expression for the solution of the
system (1.5.10):
blzsxy/SXX1 (1.5.12)
bo = f—bly_c. (1.5.13)
Finally, in the case of simple linear regression model of
relation between the target function y and independent variable

(factor) x is given by equation (1.5.9) in which the coefficients
b0, bl determined by equalities (1.5.12), (1.5.13).

44

Complete and fractional factor experiments
Let some experimental research be carried out. Each of

the different values that accepts a variable Xi in the
experiment is called the level of this variable. The number of
different levels of the factor X, is denoted by S..

An experiment, in which the levels of each factor are
combined with all levels of other factors, is called a complete
factor experiment (CFE).

A complete factorial experiment is written in the form:

S; xS, x...x§,, since the number of different points or
different experiments N, =S, xS, x...x S, .

An experiment plan is called an incomplete or fractional
factor plan, if the number of different points
N, <S, xS, x...x§,.

Consider the response function

n="1(X, X500 X)) (15.14)
Let the number of different values that can take a variable X,
(i=12,.,k) in all experiments is equal to two, that is, s =2. In
other words, the variable X, in each experiment accepts one of
two possible values, or they say, varies on two levels. Let's
denote them x, and x,. We will assumex, < x,, then x, is
called the upper level of the factor, and x_ - the lower one.

We introduce coded variables: , _ Xi =X i=12,..k
i Si
Xia + Xiz

where X0 = i=12,..k;

s =2i2=Xa =12 k.
2

45

Obviously, the coded variable Xj(i=12,..,k) in each
experiment may have a value of 1 or -1. We call these values
upper and lower levels. Without limitation of generality we can
assume that in the expression (9.1) the variables X, X,,..., X,
are given in coded form:

7= F(X, X000 X,) (1.5.15)
Consider the case when in the expression (1.5.15) the number
of independent variables k =2, i.e. 7= (X, X,).
All possible combinations of levels of variables X, and X, in
CFE 22 are presented in Table 1.5.1:

Table 1.5.1
Number of Matrix of independent variables Research .
; - Observation

experiment | xg X1 X2 X1 Xp option

1 1 -1 -1 1 (1) Y,

2 1 1 -1 -1 a Y,

3 1 -1 1 -1 b Y,

4 1 1 1 1 ab Y,

Here the symbol (1) means that both factors are in the lower
level; a - x; in the upper; b - x, in the upper; ab - both at the
upper level. This is CFE 22 Often, it is believed that the
response function has the form:

n =P+ BX + L% + BiX X, (1.5.16)
Scheme CFE 27 can be depicted in the form:

#
r

-11) (L1

-1-1 (L-1)

Fig.1.5.5. Scheme CFE 22

46

It is easy to see that observations yi, Y,, Va3, Y4 are
performed at the vertices of the square. The coefficients
(1.5.16) are the least squares method
Let's consider the case of CFE 2. In this case:
n="f(x,%,%). All different combinations of levels of

variables X, X,, X, are presented in Table 1.5.2.

Table 1.5.2
Matrix of independent variables Res_earch Observation
Xo X1 X2 X3 X1 X2 X1 X3 X2 X3 1X2 X3 Optlon
1 -1 -1 -1 1 1 1 -1 1) Vi
1 1 1 -1 -1 -1 1 1 A Y2
1 1 1 -1 1 1 -1 1 B Y3
1 1 1 -1 1 -1 -1 -1 ab Ya
1 1 1 1 1 -1 -1 1 C Vs
1 1 1 1 1 1 -1 -1 ac Ve
1 1 1 1 -1 -1 1 -1 bc Y7
1 1 1 1 1 1 1 1 abc Vs

The function of the response is sought in the form:
n=p,+ Zﬂixi + Zﬁijxixj + BrasX X3 X3 (1.5.17)
1<i<3 1<i<j<3
The coefficients of (1.5.17) are obtained by the least squares
method.
In a complete factor experiment 2% the number of

experiments N = 2% . As the number of variables k increases,
the number of experiments N is increasing rapidly. Therefore,

when large-scale k sales of CFE 2% becomes practically

impossible. For PFE 2* experiments the dependence, similar to
(1.5.17), has the form:

=B+ D BXi+ D BXX;+ ot By XXXy (1.5.18)

1<i<k 1<i<j<k
With growth N there is an increase in the number of
interactions and their order in (1.5.18). But often in the
equation (1.5.18), the effects of high-order interaction can be
neglected, or it is known a priori that some of them are absent.
The number of experiments to find estimates of unknown
47

coefficients of such an equation can be significantly reduced.
This is achieved by applying fractional factor experiments. If in

CFE 2 observations are carried out at all vertices Kk -
dimensional hypercube, then using fractional monitoring plans
are carried out in some of them.
Consider an example of constructing a fractional replica. Let
the feedback function look like:
n=p5+ Z,Bixi (1.5.19)
1<i<3

In this expression the effects of pair and triple interactions are

absent: B2 =Py =P =P =0
If you use CFE 22 to estimate unknown coefficients, then N =
However, the number of experiments can be reduced
because in (1.5.19) the interaction effects are absent. To this
end, we will build a plan whose matrix has the form:
Xl XZ X3

-1 -1 1
1 -1 -1 (1.5.20)

D=
-1 1 -1

1 1 1

Matrix of CFE 2°

The matrix D is derived from the matrix CFE 2° by removing
next lines from it: (1;-1;1), (-1;1; 1), (-1;-1;-1), (1;1;-1).
Constructed fractional factor experiment (FFE) (5.20) is a
semi-recipe of CFE 2%, For its record, the notation is used: 2%,
where 2 is the number of levels; 3 - the number of variables;
N= 2>' - number of experiments. The code mark of the
semicircular: c; a; B; aBc.

Consider the features of building a plan. As can be seen from
(1.5.19), the variable x3 at the points of the plan satisfies the
ratio:

X3 = XX, (1.5.21)

48

(1.5.21) — this is the so-called generating ratio. It is easy to
construct after it (1.5.20) - initially CFE 22, and then - vector-
column x3 corresponding to (1.5.21).
The coefficients of the model in the FFE are also based on the
least squares method.
Planning an experiment on the “‘composition-property”
diagrams
Let’s consider the planning of an experiment for
systems that represent mixtures of q different components.

Variables X (i =1,2,---,CI) of such systems are

proportions (relative to the content) of the components of the
mixture and satisfy the condition:

> x =1 (%20 (1.5.22)

1<i<q

The geometric place of the points satisfying condition

(1.5.22) is (g-1) - a measurable regular simplex (triangle for q =
3, tetrahedron for q = 4, etc.). Each
point of such a simplex corresponds to a mixture of a certain
composition and vice versa, any point of a simplex corresponds
to any combination of relative contents of g components. To a
special simplex system (fig. 1.5.6) in which the relative
contents of each component are deposited along the
corresponding faces of the simplex. On the vertices of a

simplex each X;=1, then - determined by the lines (or

surfaces) of a level, which are parallel to the opposite side (or
faces) of a

Xa X-
Fig. 1.5.6. Simplex coordinate system

49

simplex. For example, for a three-component mixture, we have
a simplex in the form of a triangle X;X, X5 on the plane

(Fig. 1.5.6). The value of x; at the vertex x; is equal to one,
and on the x,x3 side it is zero.

The problem of constructing a mathematical model
"composition-property” can be solved by writing the desired
function in the form of a polynomial of degree n in the
canonical form:

=S Sl s T g

I<i<q m=2 (I<i<j<q m=3 | I<i;<i,<...<i <q
(15.23)

where S, +S,+..+S, =N,

A polynomial of this kind (so-called
reducedpolynomials) is obtained from ordinary polynomials of
the corresponding degree taking into account the relation:

> x; =1 and contain ¢!, coefficients.

1<i<q

For example, a second degree polynomial, which in
general has the form:
§ =l +b,x +b,%, +byX, +b,X,X, +byuX X, +0,%, %, +by, % +b,yxF +bx
taking into account the correlation x, + x, + x, =1 will take the
form:
Y= BX + BoXy + BoXs + BioXi Xy + BisXiXs + BrXoXs.

To estimate the coefficients of the reduced polynomial
(1.5.23), plans were proposed that ensure a uniform spread of
experimental points in (g-1) - dimensional simplex. The points
of such plans are knots {q, n} -of simplex grid. In {qg, n} - grid
for each factor (component) uses (n + 1) evenly spaced levels

in the range from 0 to 1 (Xi :0,% % 1) and take a variety

of their combinations. Thus, the number of such combinations
c" . is equal to the number of coefficients in the given

gq+n-1

50

polynomial (15.23). A set of points (Xu, Xouseens Xou),
u=12..,N=Cg, ,, where xiuzo,%,%’,__,l, S %, =1

1<i<q

forms a saturated simplex grid plan {q, n}.
Examples of {q, n} grids:

- linear - quadratic

: . - cubic
imcomplete cubic

Planning with a pre-transformation of simplex area

When solving q - component mixed problems, it is often
necessary to investigate only (g-1) -dimensional simplex
suboblusion of a complete (g-1) -dimensional domain. The sub
region can be specified by the restrictions on the region of

change of all components, for example X; =q; (i=1, 2, ...,
g). In this case, the direct application of the above methods is
impossible because the condition 0<Xx;, <1 is violated.

Therefore, pre-transformation of the sub-region is made by
moving to a new coordinate system (z,,2,,...,2,)

"2,
For the sub-region we have:
0<z,<1,i=1,2,...,q; ¥ + 2}V +..+ 2}V =1, (1.5.24)
where u — any point of sub-region.

51

X2 Z

X3 X1 Z3 Z;

Fig.5.7. Transformation of the sub-region

Transforming relationship between coordinate systems
(%, X, %;) and(z,,2,,...,2,)and providing (1.5.24) is given

X
by the matrix equation X = AZ, in expanded form

x x® x® L x@zW
W [y® @ @] [,
RO _pen X e X 1% (1.5.25)
(u) @ (2) (q) (u)
Xq Xq Xq Xq Zq

Here the elements of the matrix A are the coordinates of the
vertices of the simplex; x{ i ;®- input and new coordinates

of the u-th transformed point.

For all new z variables, all plans that were used for a
complete simplex can be constructed. However, realization of
the experiment in such conditional plans is impossible. For the
experiment, it is necessary to represent the experimental
compositions in the x-coordinates (transition for (5.24)).

1.6. THEORETICALAL MATHEMATICAL MODELS
OF DESIGN OBJECTS
Basic concepts of the theory of differential equations
Differential are called equations containing derivatives
of an unknown function of one or more independent variables.
Equations containing derivatives of several independent
variables are called partial derivatives.

52

Equations containing derivatives of only one of the
independent variables are called ordinary differential equations.

The general form of the differential equation of the n-th
order is as follows:

F(x, YA y(”)) =0. (1.6.1)
This is an implicit form of differential equation. An explicit
form of the equation of the nth order is an equation that is
solved with respect to the older derivative:

yoO = (XY, Y, Y.y) (1.6.2)
Let the wvariable x take wvalues in the interval
| = R =(—o0,). The solution of the differential equation on the

interval | is the differentiated function Yy =¢@(X) in |, after

substituting it into an equation, it turns into equality for all xel
(the identity on the set I). The graph of the solution of the
differential equation is called the integral curve.

The general solution of the equation usually contains
one free numerical parameter and has the form

y=o(x C) (1.6.3)

where C is the mentioned parameter, ¢- is a certain function.
Equation (1.6.3) determines the family of functions that depend
on the parameter C. The isolation of a single solution of the
family of solutions (1.6.3) can be fulfilled if the known initial
value y(Xo) =Yyo for some xo €l.

The general solution of equation (1.6.1) or (1.6.2) is the
family of functions of the form

y=o (X Cy...,.Cp), (1.6.4)

where Cy,...,C, are numerical parameters, which are also called
arbitrary constants, and each function of this family is the
solution of this equation (at one or another numerical interval).

The parameters Ci,...,C, can be determined by the
initial conditions of the form y(Xo) = y10,....y"™ *(Xo) = Yno.

There are situations when solutions of differential
equations in explicit form (6.3), (6.4) can not be obtained, but

53

we can find so-called general integrals, otherwise general
solutions of these equations. In this case, the general integral of
the differential equation (1.6.1) ((1.6.2)) is called so different
from the identity of the equation

v(x,v,C,,C,....C,)=0, (1.6.3a)
that the solutions (1.6.1) ((1.6.2)) are differentiated functions
y = ¢(x), which are obtained as solutions to equation (1.6.3a)
with values of stable Cy,... C, from certain certain domains.
The function w is also called the general integral of the
equation.

Methods of solving differential equations

The problem of solving the ordinary differential
equation in the general case is much more complicated than the
problem of calculating single-time integrals, and therefore the
fate of cases of explicit integration is much lower here.

Numerical methods for solving differential equations
can be divided into two classes. One of them includes methods
that use one starting value of the solution at each step, and the
second forms methods that use several values at each step
(multi-step methods). The latter are characterized by the fact
that based on the previously obtained several values of the
function, new ones are constructed, which then are refined with
the help of the differential equations themselves.

The first class includes the methods of Runge-Kultti, in
particular, the methods of Euler-Cauchy and trapezius. The
second is, for example, the Adams method, the Krylov-Adams
method.

Let's consider first the Euler-Cauchy method.

Let a differential equation is given
Y tixy), (1.6.4)
dx

where (X, y) belongs to the domain G with the initial

condition

X = Xo, Yo = Y(Xo) (1.6.4")
54

The method of constructing an approximate solution of
the Cauchy problem (1.6.4), (1.6.4") Is based on the concept of
so-called broken Euler. Laman Euler is a graph of a piecewise
linear function, which is constructed by the following rule. Let
h be a small positive number (step method). Let's consider in
the Cartesian plane a point with coordinates (X1, y1), where

X1 = Xo + h, y1 = Yo + hf (Xo, Yo).

Note that according to the Taylor formula, due to the
equations (1.6.4), (1.6.4"), The value of yican be considered as
an approximation to the value of the solution y(x;) of the
Cauchy problem under consideration. If the point (X1, Y1)
belongs to the set G, then we continue the construction by the
inductive rule

Vit1 =Yt hf (X[, y,'), iZO, 1,2,... .

Each value y is considered as an approximation to the
value of the desired solution y at x;. Thus we obtain a sequence
of points(x;, y;) , i = 0,1,2,... , where all x; are located to the
right of the point xo. Similar construction, if necessary, is
performed to the left of point xo. On the received sequence we
construct a piecewise linear function

yx) =y +f (X, y)(X—X), X €[X, Xi+1] , i =0, 1,2,...,
which (or whose schedule) is called broken Euler. There are
several theorems that guarantee that, under certain conditions,
the Euler Layer directs to the solution of the Cauchy problem
(3.10), (3.10"), When the step of the method h goes to 0.

Let a differential equation be given

dy _ f(x,). (1.6.4)
dx
It is necessary to find an approximate solution (1.6.4) at

points with coordinates x =x, +h, x,=x,+2h,.x =X, +nh,
where h - is a constant step; x, - the coordinate of the
beginning of the segment.

55

Initial condition: x = x_,
value of the first derivative has the form
% ~ Ayk _ yk+1 yk

dx, — Ax, h
where k =0,1..n-1.

Equating (1.6.4) and (1.6.5) we obtain:

yk+1

k — f Y
h (X Vi

where:
Yia = Y t hf (Xk' yk)

the beginning of each segment [X k+l] the tangent to the

integral curve 1 (fig. 1.6.1) Is carried out.

Y, = Y(X,)- The approximate

(1.6.5)

(1.6.6)
Using the recurrence formula (1.6.6) for the points
k=01..n—1, we construct the Euler lamina 2, which

approximately replaces the integral curve 1 (see fig. 1.6.1). The
essence of the Euler-Cauchy method lies in the fact that, due to

The accuracy of the Euler-Cauchy method is small.

Method error is proportional to h?.

..
0 2
Sug -

Mp

n

y)(r)

AV
1 -integral curve
2 - Euler broken line
’ilo !
),) ey)
0 i h i h E
Y0 o B

1
|
!
|
|
|
i
1
1
|
I
!
i
1
!
i

X

n

Fig. 1.6.1. The calculation scheme of the Euler-Cauchy method

56

A 4

A variant of the Euler-Cauchy method is a trapezoid
method. It is implemented by applying at each step a recurent
formula

Yiir = Vi +2{f(xk1yk)+ f|:xk +h Yt hf (Xk,yk)}}. (|67)

The error of the trapezium method is proportional to h®
and is also attributed to the general methods of Runge-Kutta.
Multi-steps solving of differential equations (finite
difference methods) are based on the resolution of these
previous steps. This allows you to increase the computational
speed. To realize the finite-difference methods for the
numerical integration of differential equations need to know
the function and its derivatives at several points close to the
original. Here you can note Picard's method and the method of
decomposition
Systems of differential equations
Set of relationships
Fo (X Yoo Yan Vioeen Y1) =0
XYy Y YihenYi) =0 (1.6.8)
F (Y Y Yeeny)=0
where X - is an independent variable,
Y., ¥, Y, - unknown functions depending of X,
F.,F,,....F, -are known functions,
is called the system of differential equations of the first order.
The solution of this system are functions
Y, (%), Y,(X),...,y,(x) that, when substituting in (1.6.8),
transform the system into identity.

If the system of differential equations (1.6.8) allows for
the solution of the derivatives, then we obtain the system

57

d
d))/(l= 06 Y Yo Y,) 159
d 6.
d{j =f,(% ¥, Yo V)
gy

L= (XY, Y, Y,
dx NCAMANAS

which is called normal.
An example of one normal first-order equation is

dy
S txy)
3= Ty

This equation gives a field of directions in a plane X,y .

The solution of the equation is one parametric family of curves
located in one plane. If in this plane a point (x,,y,) and

f(x,y), o - are continuous, then the equation has a unique

solution that satisfies the initial conditions y(x,) =Y,.
Let's now take two equations

dy, d
ddx =f,(Y,Y,) or d—iz f(xY,2).
yz dz
= f 1 Y11)2 -V = 1 Y
dx L6 Y,) i f,(x,y,2)

Under certain conditions we get a solution

ylzy:(pl(x); y2:ZZ¢2(X)'

These solutions can be considered as parametric
equations of the spatial curve in the coordinate system X, Y, Z.

Thus, the solution of one equation can be represented
by a curve of two-dimensional space. The solution of two first-
order equations can be represented by a curve in a three-
dimensional space. The solution of n equations of the first
order forms a curve in (n+1)-dimensional space. These

curves are called integral.

58

Numerical solution of systems of differential equations is
carried out in the same way as solving a single differential
equation

1.7. INTEGRATED AUTOMATED DESIGN SYSTEMS.
DESIGN AND PRODUCT LIFE CYCLE
MANAGEMENT SYSTEMS
Introductory provisions

To understand the meaning of the CAD / CAM / CAE
systems (all these systems are collectively referred to as
automated design systems), it is necessary to examine the
various tasks and operations that have to be solved and
performed in the process of product development and
production. All these tasks, taken together, are called product
cycle (product cycle).

The development process begins with customer
inquiries served by the marketing department and ends with a
complete description of the product (executed in the form of a
drawing). The production process begins with technical
requirements and ends with the delivery of finished products.

The production process begins with the planning, which
is executed on the basis of the drawings received at the stage of
designing and ends with the finished product.

As a result of production preparation, a production plan,
inventories of materials and software for the equipment are
made. The last phase of the development process is the
preparation of the project documentation. At this stage, the use
of systems for preparing work drawings becomes useful. The
ability of such systems to work with files allows you to
systematize the storage and ensure the convenience of finding
documents.

Computer technologies are also used at the production
stage. The production process includes planning the release,
designing and acquiring new tools, ordering materials,

59

programming of machines with numerical control (CNC),
quality control and packaging.
Basic concepts of CAD/CAM/CAE systems

Computer-aided design (CAD) — is a technology that
involves the use of computer systems to facilitate the creation,
modification, analysis, and optimization of projects. Thus, any
program that works with computer graphics, as well as any
application used in engineering calculations, relates to
automated design systems. In other words, most CAD tools can
range from geometric forms for working with forms to
specialized applications for analysis and optimization.

Computer-aided manufacturing (CAM) - is a
technology that involves the use of computer systems for the
planning, management, and control of production operations
through a direct or indirect interface with the enterprise's
productive resources. One of the most common approaches to
automation of production is numerical control (NC, numerical
control - NC).

CNC is to use programmed commands to control the
machine, which can be grinding, cutting, milling, punching,
bending and other ways to turn the workpieces into finished
parts.

Another important function of automated production
systems is the programming of robots that can work on flexible
automated areas by choosing and installing tools and parts that
are machined on CNC machines. The works can also perform
their own tasks, for example, to weld, assemble and transport
the equipment and parts of the shop.

Computer-aided engineering (CAE) - is a technology
that uses computer systems to analyze CAD geometry,
modeling and studying product behavior to improve and
optimize its design. CAE tools can carry out many different
analysis options.

Hardware and software CAD

60

To implement a computer-oriented approach to design
and production requires special hardware and software.

The key aspect is interactive form control, so hardware
and software for interactive manipulation of forms are one of
the major components of the CAD / CAM / CAE system.
Graphics devices and | / O peripherals together with the usual
computing module make CAD / CAM / CAE system hardware.

CALS- technologies. Substantive provisions

Modern conditions are characterized by increasingly
tight competition in the international market, increasing
complexity and knowledge-intensive production, which puts
new problems for industrialists and businessmen in the
country. Among them are:

the critical time needed to create a product and organize
its sale;

reduction of all types of costs associated with the
creation and maintenance of the product;

improving the quality of design and production
processes;

providing flexible and reliable maintenance
Services.

An effective means of solving these problems in the last
decade are the new information CALS-technologies of cross-
cutting support of complex science-intensive products at all
stages of its life cycle (LC) from marketing to recycling. They
are based on a standardized single electronic data view and
collective access to them, these technologies make it possible
to substantially simplify the implementation of the stages of the
LC product and increase productivity, according to western
experience, by about 30%, to automatically provide a given
product quality.

For the first time, elements of CALS-technologies
began to be used in the mid-80 with the interaction of the US
Department of Defense with its suppliers, when asked to

61

translate all operations with them in electronic form.
Subsequently, the scope of CALS-technologies expanded to the
entire life cycle of the product and went beyond the military
departments. Nevertheless, the most advanced users of CALS
technology are still military developers.

In the field of the civilian introduction of CALS-
technologies in the world, the leading aerospace, and nuclear
industry, automobile, and shipbuilding. In Europe, CALS has
also been widespread. The European Industrial Group in the
field of CALS has been created, national CALS programs are
created and created, as well as individual CALS projects.

Lack of introduction of CALS-technologies will make it
impossible for enterprises to participate in international
cooperation, will negatively affect the competitiveness and
attractiveness of manufactured products, will cause loss of
certain segments of the market.

At the moment, CALS is understood as a global
strategy for increasing the efficiency of business processes
performed during the life cycle of a product due to
information integration and continuity of information generated
at all stages of the lifecycle.

The means of realization of this strategy are CALS-
technologies, which is based on a set of integrated information
models: the life cycle itself and carried out in its course
business processes, product, and production and operating
environment.

The possibility of sharing information is ensured by the
use of computer networks and the standardization of data
formats, which provides a correct interpretation of information.

CALS (Continuous Acquisition and Life Cycle
Support) - is a United States Department of Defense initiative
for electronically capturing military documentation and linking
related information. This is a strategy for increasing the
efficiency, productivity, and profitability of the processes of

62

economic activity of enterprises due to the introduction of
modern methods of information interaction of participants of
the LC product.

The life cycle of a product is a set of processes
performed from the moment of identifying the needs of society
in certain products until the time these needs are met and the
product disposed of.

The LC product is characterized by a large variety of
processes. The most famous are production process, design
process, procurement process. Each of these processes, in turn,
consists of technological processes and organizational and
business processes. For the general description of these
processes, the term "business process” is used.

Business process - a set of technological and
organizational and business processes, carried out purposefully
within the framework of a predefined organizational
structure.

Consider the definition of CALS in more detail. In the
literal translation, the abbreviation CALS means "continuity of
supply of products and maintenance of its life cycle". The first
part of the definition - "continuity of supply of products”
requires and provides optimization of the processes of
interaction between the customer and the supplier in the
development, design, and production of complex products,
whose lifespan, taking into account various modernizations, is
made for decades. To ensure efficiency, as well as reduce costs
and time, the customer-supplier interaction process must be
truly continuous. The second part of the definition of CALS -
"lifecycle support” - is to optimize the maintenance, repair,
spare parts supply and upgrades. Since the costs of maintaining
a complex hi-tech product in an able-bodied state often equal
or exceed the cost of its acquisition, a fundamental reduction in
the "cost of ownership” is provided by investments in the
establishment of a system of support for JCs.

63

The purpose of using CALS-technologies, as an
instrument of organization and information support of all
participants in the creation, production and use of the product,
is to increase the efficiency of their activities by accelerating
the research and development of products, adding products
new properties, reducing costs in the processes of production
and operation of products, increase the level of service in the
processes of its operation and maintenance.

The subject of CALS is the technology of information
integration, that is, the sharing and sharing of information
about the product, environment, and processes that occur
during the product lifecycle. The basis of CALS is the use of a
complex of unified information models, standardization of
ways to access information and its correct interpretation,
information security, legal issues of sharing information
(including intellectual property), use at various stages of JCs of
automated software systems (CAD / CAM / CAE , ERP, etc.),
allowing to produce and share information in the format of
CALS.

Tasks that are solved with help of the CALS-
technologies

Modeling the product lifecycle and executable
business processes. This is the first and very significant step
towards improving the effectiveness of an organizational
structure that supports one or more stages of the product's JC,
i.e. modeling and analyzing its operation.

The purpose of the business analysis is to identify
existing interactions between component parts and evaluate its
rationality and efficiency. To do this, using functional CALS-
technologies, functional models are developed that contain a
detailed description of the processes performed in their
interconnection. The resulting functional model not only
provides a detailed description of executable processes but also
allows solving a number of tasks related to optimization,

64

estimation, and allocation of costs, estimation of functional
productivity, loading and balancing of components, that is,
questions of analysis and re-engineering of business processes.
Functional modeling techniques, for example, can be
successfully used in creating systems for product quality
assurance.

Design and production of the product. Joint, co-
operative design and product manufacturing can be effective if
it is based on a single product information model (electronic
product model). Once created, the product model is used
repeatedly. It is supplemented and modified; it serves as a
starting point for product upgrades. A product model in
accordance with this standard includes geometric data, product
configuration information, changes, approvals, and approvals.
The standard way of presenting design and technological data
allows you to solve the problem of information exchange
between different divisions of the enterprise, as well as
participants of the cooperation, equipped with heterogeneous
design systems. The use of international standards provides a
correct interpretation of stored information, the ability to
quickly transfer functions of one contractor to another, which,
in turn, can take advantage of the results of work already
carried out.

Operation of the product. It is known that the volume
of developer documentation for a complex science-intensive
product is very large. Therefore, traditional paper
documentation of complex products requires huge costs for
supporting archives, adjusting documentation, and also reduces
the operational attractiveness and competitiveness of the
product. The solution to the problem is to translate the
operational documentation for the product that comes to the
consumer, in electronic form. Electronic documentation can be
delivered on electronic media (for example, on CDs) or placed
on the Internet. Standardization guarantees the applicability of

65

such electronic documentation on any computer platform. It is
important to note that in the electronic form the operational
documentation that was created earlier without the use of
computer systems can be converted. For products that are
already in operation for a long period and designed by
traditional methods, the task of supporting documentation is
equally relevant. As an example, you can cite the experience of
projects in the Navy and US Air Force to massively transfer
millions of manual pages and drawings to a standardized
electronic view. The received electronic documentation is
placed in special repositories on the Navy and Air Force bases
or directly from producers and is accessible through computer
networks. It uses modern scanning technologies, text
recognition, vectorization of drawings and circuits, creating
electronic directories for entire products and individual
systems.

What CALS-technology does

CALS is considered as a comprehensive system
strategy for improving the efficiency of all processes of
industrial products, directly affects its competitiveness. The
application of the CALS strategy is a condition for the survival
of enterprises in a context of growing competition and allows:

- to expand the scope of enterprises (sales markets)
through cooperation with other enterprises, provided by
standardization of the presentation of information at different
stages and stages of the life cycle;

- at the expense of information integration and
reduction of expenses for paper document circulation, re-input,
and processing of information ensure the continuity of the
results of work in integrated projects and the possibility of
changing the composition of participants without losing the
results already achieved,;

- to increase the "transparency” and manageability of
business processes through their re-engineering, based on

66

integrated models of JCs and running business processes,
reduce costs in business processes at the expense of better
balance of links;

- to increase the attractiveness and competitiveness of
products designed and manufactured in an integrated
environment using modern computer technologies and have the
means of informational support during the exploitation phase;

- to provide the given quality of production in the
integrated system of support of the LC by electronic
documentation of all processes and procedures;

- reduce production costs and reduce the cost of
production;

- reduce the time of product creation, its modernization
and increase its real lifetime, functioning in a workable state at
the expense of high quality and electronic support during
operation.

Life cycle of the software

The life cycle of software — is a period of time that
begins with the decision on the need to create a software
product and ends when it is completely decommissioned. This
cycle — is the process of construction and development of
software. The standard provides for the following stages and
stages of the creation of an automated system (AS):

- formation of requirements to the AS;

- development of the concept of the AS;

- study of the object;

- conducting the necessary research work;

- technical task;

- sketch project;

- technical project;

- working documentation;

- development of working documentation on the AS and
its parts;

- development and adaptation of programs;

67

- putting into operation;

- preparation of the object of automation;

- conducting preliminary tests;

- conducting experimental exploitation;

- support of the AS;

- performance of work in accordance with warranty
obligations

- post-warranty service.

The model of the life cycle of the software is a structure
that determines the sequence of execution and the
interconnection of processes, actions, and tasks throughout the
life cycle. The life cycle model depends on the specifics, scale,
and complexity of the project and the specific conditions in
which the system is created and functioning. The standard does
not offer a specific life cycle model. Its provisions are common
to any life-cycle models, methods, and technologies for
creating an IP. It describes the structure of the processes of the
life cycle, without specifying how to implement or execute the
actions and tasks included in these processes.

The model of software includes stages; performance
results at each stage; key events - points of completion and
decision making.

Stage - part of the process of creating software, limited
by certain time frames and ends with the release of a specific
product (models, software components, documentation),
determined by the requirements specified for this stage.

Software life cycle models

Waterfall (cascade, sequential) model

The waterfall model of the life cycle was proposed in
1970 by Winston Royce. It involves the consistent
implementation of all stages of the project in a strictly fixed
order. Moving to the next step means complete completion of
the work in the previous step. Requirements defined at the
stage of forming requirements are strictly documented in the

68

form of a technical specification and fixed for the entire time of
project development. Each stage ends with the release of a
complete set of documentation that is sufficient to allow the
development to be continued by another team of developers.

Stages of the project according to the cascade model:

- formation of requirements;

- designing;

- realization;

- testing;

- implementation;

- operation and maintenance.

Advantages of cascade model:

- complete and consistent documentation at each stage;

- It is easy to determine the terms and costs of the
project.

Disadvantages: in the fall-off model, the transition from
one phase of the project to another implies the complete
correctness of the result (output) of the previous phase.
However, the inaccuracy of a requirement or the incorrect
interpretation of it results in the fact that it is necessary to "roll
back™ to the early phase of the project and the required
processing does not simply knock out the design team from the
graph, but often leads to a qualitative increase in costs and, it is
possible, to terminate the project in the form in which he
initially thought. A foolproof model for large projects is
realistic and can only be effectively used to create small
systems.

Iterative model

An alternative to the successive model is the so-called
model of iterative and incremental development, which also
received the name of the evolutionary model from T. Gilba in
the 70's. Also, this model is called an iterative model.

The model involves dividing the life cycle of the project
into a sequence of iterations, each of which resembles a "mini-

69

project”, including all development processes applied to the
creation of smaller fragments of functionality, as compared to
the project as a whole. The purpose of each iteration is to
obtain a working version of the software system, which
includes the functionality defined by the integrated content of
all previous and current iterations. The result of the final
iteration contains all the necessary functionality of the product.

The approach has its own negative sides, which, in
essence, are the reverse side of merit. Firstly, there is no
comprehensive understanding of the possibilities and
limitations of the project for a long time. Second, iterations
have to reject part of the work done before. Thirdly, the
integrity of specialists in the performance of work is still
reduced, which is psychologically understandable, because
over them constantly hangs the feeling that "everything can
still be reworked and improved later".

Version Control System

Version Control System — is software for facilitating
work with changing information. The version control system
allows you to save several versions of the same document, if
necessary, to go back to earlier versions, to determine who and
when they made one or another change, and much more. Such
systems are most widely used in developing software for
storing source code of the program, which is being developed.
However, they can be successfully applied in other areas where
work is underway with a large number of continuously
changing electronic documents. In particular, version control
systems are used in CAD, usually in the PDM system.

General information. The situation in which an
electronic document undergoes a number of changes during its
existence is quite typical. It is often important to have not only
the latest version but several previous ones. In the simplest
case, you can simply save multiple document variants by
numbering them accordingly. This method is ineffective (it is

70

necessary to store several almost identical copies), requires
increased attention and discipline and often leads to errors;
therefore, tools were developed to automate this work.
Traditional version management systems use a
centralized model when there is a single document repository
driven by a special server that performs most of the functions
of version management. A document user must first obtain the
version of the document from the repository he needs; usually,
a local copy of the document is created, i.e. "Working copy".
The latest version or any of the previous ones may be obtained,
which may be selected by version number or date of creation,
and sometimes by other features. Once the necessary changes
are made to the document, the new version is placed in the
repository. Unlike a simple file save, the previous version is
not erased, but also remains in the repository and can be
obtained from there at any time. The server can use the so-
called. Delta compression is a way of storing documents that
store only changes between successive versions, which reduces
the amount of stored data. Since the most recent version of the
file is most in demand, the system can save it completely while
saving the new version, replacing the last previously saved
version in the repository with the difference between this and
the latest version. Some systems support the preservation of
versions of both types: most versions are stored in the form of
deltas, but periodically (by a special administrative command)
all versions of all files are kept in full; Such an approach
provides the maximum full recovery of history in the event of
damage to the repository. It often happens that several people
work simultaneously on one project. If two people change the
same file, one of them may accidentally cancel the changes
made by others. Version control systems track such conflicts
and offer solutions to them. Most systems can automatically
merge (merge) changes made by different developers.
However, such an automatic combining of changes, as a rule, is

71

possible only for text files and provided different (non-
overlapping) parts of this file have been changed. This
limitation is due to the fact that most version control systems
are oriented to support the software development process and
the source code of the programs is stored in text files. If the
automatic merger fails, the system may suggest solving the
problem manually. Often it is impossible to perform a merger
either in automatic mode or in manual mode, for example, if
the file format is unknown or too complicated. Some version
control systems allow you to lock the file in the repository. The
lock prevents others from obtaining a working copy or
preventing a change in the working copy of the file (for
example, by means of the file system) and thus provides
exclusive access to only the user who is working with the
document. Many version control systems provide a number of
other features: Allows you to create different versions of a
single document, i.e. branches, with the general history of
changes to the point of branching and with different - after it.
Allows you to know who and when added or modified a
particular set of lines in a file. Conducts a log of changes in
which users can write an explanation of what and why they
changed in this version. Controls user access rights by
resolving or prohibiting reading or modifying data, depending
on who is asking for this action.

Typical working order with the system

Each version management system has its own specific
features in the set of commands, user order, and administration.
Nevertheless, the general working order for most VCS is
absolutely stereotypes. It is assumed that the project, whatever
it may be, already exists and the server hosts its repository, to
which the developer has access.

The first action required by the developer is to extract a
working copy of the project or the part that it will have to work
with. This action is performed using the standard version

72

extractor command. The developer sets the version to be
copied, by default, the last one (or chosen by the administrator
as the main) version is usually copied. The removal command
establishes a connection to the server and the project (or part of
it - one of the directories with subdirectories) in the form of a
tree of directories and files are copied to the developer's
compulter.

Modification. The developer modifies the project by
modifying the files in it in a working copy in accordance with
the design task. This work is carried out locally and does not
require calls to the VCS server.

Changes fixation. Having finished the next stage of
work on the task, the developer fixes his changes, passing them
to the server.

Versions merge. Changes within a single text file made
in different versions can be merged if they are located in
different places of this file and do not overlap. In this case, all
the changes made are made into the combined version.
Changes within one file, if it is not text, are always conflicting
and cannot be combined automatically. The overwhelming
majority of modern version control systems are focused, first of
all, on software development projects, in which the main kind
of file content is text. Accordingly, mechanisms for automatic
merging of changes are guided by the processing of text files,
that is, files that contain text consisting of strings of
alphanumeric characters, spaces, and tabs separated by lines of
the line's characters. When determining the admissibility of a
merger of changes within the same text file, the typical
mechanism of line comparison works.

Conflicts and their solution. The situation when the
merging of several versions of the changes made in them
intersects each other is called a conflict. In case of conflict, the
version control system cannot automatically create a merged
project and is forced to contact the developer.

73

As already mentioned above, conflicts may occur at the
stages of fixing changes, updating or merging branches. In all
cases, when a conflict is detected, the operation is terminated
until its permission. In order to solve the conflict, the system,
in general, offers the developer three variants of conflicting
files: basic, local and server. Conflicting changes or displayed
to the developer in a special program modulus of the
combination of changes (in this case there are shown merging
options and dynamically changes depending on the user's team
combined file option), or simply marked with a special markup
directly in the text of the merged file (then the developer must
formulate the desired text in controversial places and save it).

Locking. The lock mechanism allows one developer to
seize a monopoly file or group of files to make changes to
them. As long as the file is locked, it remains accessible to all
other readers only, and any attempt to make changes to it is
rejected by the server. In some cases, the use of blocking is
entirely justified. An obvious example is the organization of
work with binary files, for which there are no tools for merging
changes, or such a merger is fundamentally impossible (as, for
example, for image files). If automatic merging is not possible,
then in the normal operation of any parallel change of such
files will lead to conflict. In this case, it is much more
convenient to make such a file blocked to ensure that any
changes to it will be introduced only consistently.

1.8. CASE - TECHNOLOGIES OF COMPUTER
DESIGN
The concept of the CASE - technology. Implementation
methods
Trends in the development of modern information
technologies lead to a continuous increase in the complexity of
information systems (ICs) that are created in various areas of

74

the economy. Modern large IP projects are characterized, as a
rule, by the following features:

the complexity of the description (a considerable
number of functions, processes, data elements and complex
interrelationships between them), which requires careful
modeling and analysis of data and processes;

presence of a set of closely interacting components
(subsystems) having their own local tasks and goals of
operation (for example, traditional applications related to the
processing of transactions and solution of regulatory tasks, and
analytical processing applications (decision support) using
unregulated data queries large volume);

the absence of direct analogs, limiting the possibility of
using any typical design solutions and application systems;

the need to integrate existing and newly developed
applications;

functioning in a heterogeneous environment on several
hardware platforms;

disunity and heterogeneity of individual groups of
developers according to the level of qualification and the
traditions of the use of certain or other tools developed,;

the substantial temporal extent of the project is due, on
the one hand, to the limited capabilities of the team of
developers, and, on the other hand, the scale of the
organization-customer and the degree of readiness of its
individual units prior to the introduction of IP.

For the successful implementation of the project, the
design object (IC) must be first and foremost adequately
described; full and consistent functional and information
models of the IC must be built. The accumulated experience of
IP designing so far shows that this is a logically complicated,
time-consuming and time-consuming work requiring a high
qualification of the specialists involved in it. However, until
recently, the design of IP was carried out mainly on an intuitive

75

level with the use of non-formalized methods based on art,
practical experience, expert assessments, and expensive
experimental verification of the quality of IP operation. In
addition, in the process of creating and operating IP, user
information needs may change or refine, which further
complicates the design and maintenance of such systems.

In the 70's and 80's in the development of IPs widely
used methodology, this provides developers with strict
formalized methods for describing IPs and technical decisions
that are adopted. It is based on visual graphics techniques:
diagrams and diagrams are used to describe different types of
IP models. The visibility and rigor of the analysis tools allowed
developers and future users of the system to informally
participate in its creation from the outset, discuss and
consolidate understanding of the main technical solutions.
However, the widespread use of this methodology and its
compliance with its recommendations in the development of
specific IPs was quite rare, since it is virtually impossible to
develop in non-automated (manual) development. Indeed, it is
very difficult to manually design and graphically present the
strict formal specifications of the system manually, check them
for completeness and consistency, and even more so. If you
still manage to create a rigorous system of project documents,
then it's processing in the event of serious changes is
practically impossible. Manual development usually caused the
following problems:

Inadequate specification of requirements;

Failure to detect errors in design decisions;

Low quality of documentation, which reduces
operational quality;

Latency cycle and unsatisfactory testing results.

On the other hand, IP developers historically have
always been the last in a number of those who used computer

76

technology to improve quality, reliability, and productivity in
their own work (the phenomenon of "a shoe without a boot").

The listed factors contributed to the emergence of
software-technological tools of the special class - CASE-tools,
implementing CASE-technology for creating and maintaining
IP. The term CASE (Computer Aided Software Engineering) is
currently used in a very broad sense. The primary meaning of
the CASE term, limited by the automation of software
development (software), has now acquired a new meaning,
which encompasses the process of developing complex ICs in
general. Now under the term, CASE-tools are software tools
that support the creation and maintenance of IPs, including
analysis and requirements formulation, application software
and databases, code generation, testing, documentation, quality
assurance, configuration management and project management,
as well as other processes. CASE-tools together with system
software and hardware form a complete environment for the
development of IP.

The emergence of CASE-technologies and CASE-funds
was preceded by research in the field of programming
methodology. In addition, the emergence of CASE-
technologies contributed to such factors as:

Preparation of analysts and programmers susceptible to
the concepts of modular and structural programming;

Widespread introduction and constant growth of the
productivity of computers, which allowed the use of effective
graphics tools and automate most of the stages of designing;

Introduction of network technology, which enabled the
joint efforts of individual performers into a single design
process by using a database containing the necessary
information about the project.

CASE technology is an IP design methodology, as well
as a set of tools that allow you to visualize the subject area,
analyze this model at all stages of the development and

77

maintenance of IP and develop an application in accordance
with the information needs of users. Most existing CASE-
based tools are based on structured (mostly) or object-oriented
analysis and design methodologies that use charts or text-based
specifications for describing external requirements,
relationships between system models, system behavior and
software architectures.

According to the Survey of Advanced Technology,
compiled by Systems Development Inc. According to the
results of the survey of more than 1,000 American firms,
CASE technology is currently ranked among the most stable
information technologies (half of all respondents used it in
more than a third of their projects, 85% of them completed
successfully). However, despite all the potential features of
CASE-tools, there are many examples of their failure, resulting
in CASE-tools becoming "shelfware". In this regard, it is
necessary to note the following:

CASE-tools do not necessarily give immediate effect; it
can only be obtained after some time;

Real costs for the implementation of CASE-funds are
usually much greater than the cost of their acquisition;

CASE-tools provide opportunities for significant
benefits only after the successful completion of their
implementation.

To successfully implement CASE-tools the organization must
have the following qualities:

Technology. Understanding the limitations of existing
capabilities and the ability to adopt new technology;

Culture. Willingness to implement new processes and
relationships between developers and users;

Management. Clear management and organization in
relation to the most important stages and implementation
processes.

78

If the organization does not possess at least one of the
listed qualities, the introduction of CASE-funds may fail,
regardless of the degree of diligence to comply with various
recommendations for implementation.

"Pitfalls" use CASE-tools:

The introduction of CASE-tools can be a rather lengthy
process and may not bring immediate returns. Perhaps even a
short-term decline in productivity as a result of efforts spent on
implementation. As a result, the management of the user
organization may lose interest in CASE-tools and cease support
for their implementation;

The lack of full compliance between those processes
and methods supported by CASE-tools and those used in this
organization may lead to additional difficulties.;

Some CASE tools require a lot of effort to justify their
use in a small project;

The negative attitude of personnel towards the
introduction of the new CASE-technology may be the main
reason for the failure of the project.

Users of CASE-tools should be prepared for the need
for long-term operating costs, the frequent emergence of new
versions and the possibility of rapid moral aging, as well as
constant costs for training and advanced training of staff.

Despite all the reservations expressed and some
pessimism, a competent and wise approach to using CASE-
tools can overcome all of these difficulties. Successful
implementation of CASE-tools should provide such benefits
as:

High level of technological support for software
development and support;

Positive effect on some or all of the listed factors:
productivity, quality of products, compliance with standards,
documentation;

79

Acceptable level of return on investment in CASE-
tools.

An example of an object-oriented CASE-tool — is
Rational Rose.

Analysis, verification, and optimization of design solutions
by means of CAD

The decision to reduce the time for technological
preparation of production and release of new products,
especially small batches, ensures their competitiveness and
enables the prompt response to changes in consumer demand.
This, in turn, reduces both the cost of manufacturing new
products and the time from the appearance of new design
developments to their introduction into industrial designs. To
solve this problem it is necessary to determine the set of
necessary methods and means of education of design routes -
sequences of design operations and procedures leading to the
achievement of the goal. At the same time, methods of
constructing design sequences are determined by the type of
design tasks.

The basis for the implementation of multi-objective
technological design are existing working production systems
(WPS), focused on the production of their production tasks
(PT) and have a free time fund of their technological
equipment. Technology equipment with a free time fund is the
resources of production systems (PS) necessary for the
operation of virtual production systems (VPS). On the basis of
the information on the resources of the VPS operatively formed
the configuration (possibly changing in time), maximally meets
the requirements of the executed PT. The peculiarity of such an
approach is the use of elements of intellectual control, which
allows you to make decisions about changing the configuration
of the VPS and the formation of control information in real
time with the minimum participation of the operator-operator.

80

Multifocal technological design with intelligent control
in the WPS includes: techniques for designing technological
processes, a method for ensuring the purposeful generation of
possible variants of the WPS configuration, the method for
verifying generated options and selecting the best, as well as a
decision-making technique, on the basis of which the control of
the configuration process is carried out WPS in time.

Due to the fact that the decision-making and the
formation of its management influence is based on complex
creative processes, management must be built as an
intellectual. Thus, the conceptual idea of constructing a virtual
production system lies in the mobile organization of a
temporarily functioning object-oriented PS for the
implementation of current technological processes based on the
WPS. In other words, in the presence of some PT the strategy
of their implementation in the WPS is necessary, have a free
time fund and, in turn, oriented to the release of other, different
in their parameters of products. In this case, the
implementation of designed technological processes should not
negatively affect the timing and cost of production of the main
for these WPS products.

Implementation of the idea is achieved by the formation
of the air force rational configuration, which allows you to
carry out the PT in terms not exceeding the predetermined, but
close to them, with a minimum cost. This approach ensures that
there is no material rebuilding in the formation of the Armed
Forces for the implementation of the UA, the minimum storage
costs of finished products and the minimum amount of
resources used by operational production systems (OPS).

The use of free technological equipment WPS, focused
on the implementation of its planned technological processes,
provides a significant reduction in the time and complexity of
technological preparation of production. By the values of
attributes calculated on the basis of the information received

81

from knowledge bases, with these operations, the selection of
the necessary information from the database is carried out.

At the stage of decision-making, in accordance with the
requirements and limitations of a higher level, a decision is
made to execute a certain amount of PT.

At the design stage, the analysis of the selected PT, the
development of the technological process in the form of a set
of routes, descriptions, equipment selection, equipment, etc., is
carried out.

At the planning stage, a plan is made for the
manufacture of products with the corresponding technology on
the technological equipment, which is the air force.

At the acquisition stage, the actual purchase of raw
materials, semi-finished products, components, information
necessary for the production of the product under the
appropriate technology is carried out.

At the stage of production, a plan for manufacturing
products is realized, which results in the implementation of the
PT.

At the stage of quality control of the finished product, a
comparison of the product with its specification and
notification of non-compliance, if any, are made.

At the stage of delivery, the finished product, which
passed the quality control, is sent to the consumer.

The functions performed on the listed stages are
interrelated and can use data specific to one or another
function, which are split between several functions, or common
to all functions.

In solving the formation of the WPS, the formation and
application of databases containing information obtained on the
basis of the basic scientific provisions of the design technology
is required; methods of mathematical modeling, system-
structural analysis; theory of information, sets, mathematical
logic, control, automated design and programming technology.

82

The model of the system of multi-objective
technological design allows not only to provide functions and
activities in the automated production, but is the basis for its
system design.

The model is based on the concept of "controlled
dynamic production”, which performs the following successive
stages: decision-making, design assessment, technological
design, verification, control over the passage of the aircraft
through the VVPS.

Implementation of the mathematical models of the VPS
operation takes into account that modern flexible automated
production is based on the massive application of computer
technology - starting from the Sun, which, as a rule, have built-
in microprocessors, and ending with automated workplaces of
designers, technologists, dispatchers, etc. By virtue of the
physical distribution of these components objectively arises the
task of creating an appropriate distributed computing system,
computer, covering areas, workshops, factories, industries,
etc.EpexTuBHICTD yrpaBIiHHS

The effectiveness of management of the PS depends on
the sequence and values of the decisions taken, as well as on
the efficiency of the information received. In order to make the
necessary decisions, it is necessary to obtain relevant
information on the aircraft in real time, as well as about the
past or the future. Since the time for processing information is
limited, the analysis of the production situation and the
formation of the appropriate command team requires the
automation of the implementation of these actions. This leads
to the need to use models simulating the main actions of the
operator in the management of the aircraft. Such a system must
have the elements of intellectual control. Generation of variants
is based on an evolutionary method that uses genetic
algorithms. To implement the generation of variants, a known
method of combining heuristics. This method reduces the

83

required computing power of the entire genetic algorithm as a
whole. Upon completion of the formation of the next versions
of the configuration of the VPS, the process of their
verification is carried out. The purpose of verification of the
results is to evaluate the options and choose the best among
them. In case, if at some stage of generation the generated
version turns out to be able to work (it corresponds to the
conditions of the target functions), such variant is considered as
a worker, and on the basis of it the team is formed for practical
realization in the VPS. Verification is a complex procedure,
based on simulation simulation of processes occurring in the
VPS. At individual stages of simulation, local optimization is
carried out using such methods as linear programming,
dynamic programming, etc. The choice of a particular method
depends on the type of the current task. Simulation modeling
allows to separate from the general task of simulation separate
local, for solution of which these methods can be applied. The
purpose of this phase is the attempt to find within the
framework of the current airborne configuration of the best
variant in terms of the volumes of production resources used in
it under the provision of specified conditions. If the best
configuration option that you receive does not meet the
specified conditions, the ranking of the generated population
occurs. On the basis of a ranked population, a new population
is formed, and then the process is repeated until the working
variant is obtained. After receiving arrays of data on
technological operations, the execution of which in one or
another composition and sequence provides execution of the
WPS, it is necessary to formulate the final routes for their
implementation and the sequence of launch in the Air Force.
This task is complicated by the high computational power due
to the high dimensionality. As the research shows, in solving
such problems it is necessary to apply methods of evolutionary
search for rational solutions.

84

Structural synthesis when designing technological
processes

At the heart of the solution of the problems of structural
synthesis of various complexity is the overcoming of options of
the invoice set. When checking each sample includes:

- creation (search) of the next variant;

- the decision to replace the previously selected version
with new ones;

- Continue or stop searching for new variations.

The tasks of structural synthesis in automated
technological design depend on the level of complexity. In the
simplest problems of synthesis (the first level of complexity),
the structure of the technological process or its elements
(operations, transitions) is determined. Then for a given class
(group, subgroup, or type) of details the so-called generalized
route (generalized structure) of processing is established. It
includes a number of processing operations that are specific to
a particular class, subclass or group of parts. The list is orderly
and represents a multitude of existing individual routes. Routes
have a typical sequence and content, and they reflect the
advanced production experience of the enterprise or industry.
At the third level of complexity of structural synthesis, the
problem of choosing a variant of a structure in a plural with a
large but finite number of known variants is solved. For
solving such problems, algorithms of targeted selection are
used (for example, algorithms of discrete linear programming);
algorithms sequential, iterative and others; The task is to
complete the search by restricting the search field to the stage
of the formation of the output data.

The optimal strategy has the property that, whatever the
way to achieve some state (technological transition), the
following solutions should belong to the optimal strategy for
the part of the surface treatment plan starting from this state
(technological transition). A technology engineer working in a

85

dialog with a computer chooses such a variant of the structure,
which represents the optimal compromise between the
performance of the machine and the probability of providing a
given quality of the workpiece. The computer helps the
technologist to make a decision to change the structure,
calculating the program modes and the performance of the
machine.

The overall complexity of design can be reduced by
switching from dialog mode to batch. Similar tasks are solved
by applying training procedures (procedures for the formation
of concepts). Recognition and classification programs are used
as training procedures. At the same time there is a
redistribution of routine and creative work using a batch mode
of a higher level, the technologist is engaged in the preparation
of output data and checks the final result.

The most complex level of structural synthesis is aimed at
creating fundamentally new technological processes and is
solved by so-called search engineering (artificial intelligence).
One of the ways of search engine construction is to use the
method of heuristic techniques:

- Explanation or formulation of technical task.

- Choice of one or several analogs (prototypes) of the
technological process.

- Analysis of prototypes, identifying their drawbacks and
formulating the problem in the form of answers to the question:
what are the quality indicators in the prototype of the synthesis
process and how much is it desirable to improve them? what
new parts quality parameters should ensure the production
process to be created and which quality parameters should lose
the considered prototype?

The great difficulties encountered in search engine design
and heuristic programming have led to the emergence of expert
systems. The basis of expert systems is the database used by
the expert (user technologist) in the dialogue mode. The

86

disadvantage of such systems is the dependence of the quality
of design technological solutions (in particular, the design of
route and operational technologies) from the level of expert
preparation. Another drawback is to limit the range of tasks to
be solved and their dimensionality. The need to increase the
level of intellectualization of the automated process of
synthesis of technological solutions at high dimensions of the
solved problems requires the development of fundamentally
new solutions, one of which was the creation and use of new
methods and algorithms for the implementation of this work,
and for them - the future.

1.9. SOFTWARE DEVELOPMENT METHODOLOGIES
(RUP, XP, MSF, DSDM, RAD)
Rational Unified Process (RUP)
Rational Unified Process (RUP) is an iterative
software creating process, created with Rational Software.

RUP Blocks
Main blocks are:
o Roles(who). The role determines a set of skills,

attribution and responsibility.

o Operating products(what). An operating product is
something received from an errand, including all the
documents and models, produced during the operation on the
process.

o Task(how). The task describes a unit of work, assigned
for the role, that guarantees a significant result.

The tasks are divided into nine disciplines in every iteration:
six "engineering discipline” (business-modeling, requirements,
analysis and planning, realization, testing, deployment) and
three supporting disciplines (configurations and changes of
variables, projects management, environment).

87

Main RUP components

Six engineering disciplines

Business-modeling disciplines

Business-modeling explains, how to describe the view
of the organization, in which the system is going to be
engrained and how to utilize this view for assigning the
process, roles and responsibilities.

Organizations are becoming more and more dependent
on IT systems, which requires information systems engineers
to know, in addition, that whatever they develop is inserted into
the establishment. The first goal for the business-modeling is
establishing a deeper understanding and communicational
channel between business and software engineering.
Understanding business means, that programmers must
understand the structure and dynamics of a targeted
organization(client), current problems in the organization and
possible improvements. They also have to provide a general
knowledge of a targeted organization among the clients,
conclusive users and developers.

Disciplines of requirement
Requirements show exactly how to reveal requests of interested
individuals and turn them into a set of requirements for the
operating products.

Analysis and projecting discipline

The point of analysis and projecting discipline is to show, how
the system is going to be realized.
Model design consists of class projecting, structured into
packets and subsystems with clearly defined interfaces, that
will represent, what will become the components in the final
realization. It also contains a description of how the operands
of these constructed classes cooperate for completing the
precedent.

Realization discipline

The main goal for the realization is:

88

. To determine code organization from the point of view
of a subsystem realization.
. Classes and objects realization in terms of the (output
files, executed files, etc.).
Objective: results integration, received by individual operands
(or groups) into the executed system.

Testing discipline

Testing objectives:
* To examine cooperation between operands.
* Check a due integration of all the software components.

Rational Unified Process offers an interactive
approach, which means, that all the testing is done during the
whole project. This allows to reveal defects as soon as possible,
that drastically lowers the cost of fixing a defect. The tests are
carried out by four quality surveys: reliability, functioning,
supplement productivity and system productivity. For every
one of these quality criterion surveys, the process describes
how to pass the planning life cycle, designing, executing and
test rating.

Dissemination discipline
The goal for the dissemination is to successfully make product
versions and to supply software for conclusive users. It covers
a wide field of measures, including manufacturing of external
software versions, software and business-supplements packing,
software installation and further support and assistance for
users.

Project’s life cycle phases

RUP Phases and Disciplines

RUP defines project's life cycle, which consists of four
phases.

Initial phase

The initial goal is an adequate system estimate as a base
for calculating primary valuations and budget. Business-cases
are established at this stage, that include business-context,

89

success factors (expected income, market recognition etc.), and
financial predictions.

If the project fails at this stage, which is called a life cycle's
milestone, it can be canceled as well as iterated after being
reconstructed with the purpose of satisfying the criteria.

Specification phase

The main goal is to make the key risks, discovered
based on the analysis, more acceptable, until the very end of
this phase. Specification phase is a phase where the project
starts to get it's colors. The subject's province is being analyzed
at this stage, the architecture of the project also starts to take its
shape.

Constructing phase

The main goal for this phase is to create software
system. All of the attention falls onto developing components
and other characteristics of the system. All the main coding is
being done at this stage. Larger projects can have several
constructing phases. This stage creates the first software
release.

Plantation phase

The main objective is transferring the system from
developing into product, making it clear and comprehensible
for the conclusive user. In terms of this phase the activity
includes educating conclusive users and attendants, system
testing for checking the users' expectation. The product is also
being tested for quality standard, set in the initial phase. If all
of the requirements are met, product release landmark is
achieved and at this point the developing cycle is over.

Extreme Programming (XP)

Extreme Programming (XP)— one of the most
flexible software developing methodology. The authors of this
methodology are Kent Beck, Ward Cunningham, Martin
Fowler and others.

90

The name comes from the idea to apply useful
traditional methods and software development practice, lifting
them to a new "extreme" level. This way, for example, code
revision implementation practice, that reliess on one
programmer reviewing the code, written by another
programmer, in the “extreme" version means “pair
programming"”, meaning that the first programmer does the
coding, while his partner continuously checks the code at the
same time.

Basic XP techniques

All twelve basic extreme programming techniques can
be combined into four group:

. Fine-scale feedback
Test-driven development
Planning game
Whole team, Onsite customer
Pair programming

. Continuous, not batch process
Continuous integration
Design improvement, Refactoring
Frequent small releases

. Understanding, shared by everyone
Simple design
System metaphor
Collective code ownership or Collective patterns

ownership
Coding standard or Coding conventions
. Programmer’s welfare
Testing

XP provides the writing of automated tests (software
code, written specifically for purposes of testing other software
codes). Special attention is payed to two types of testing:

. Module unit testing;
. Functional testing.

91

The developer can't be sure whether his code is written
correctly, until absolutely all modules tests of the developed by
him system work. Module tests (unit tests) allow the
developers to make sure, that every one of them works
correctly separately. They also help other developers
understand the purpose of different parts of the code and how
they work — the logic behind the tested code becomes clear
during the examination of the test code, since it is obvious
how it should be used. Module tests also allow the developer to
refactor without any warning.

Functional tests are designed to test the functioning of
the logic generated by the interaction of several parts. They are
less detailed than unit tests, but when implemented, they relate
to a large amount of code, so the chance to detect some
improper behavior is obviously larger. Because of this, the
writing of functional tests in industrial programming often
takes higher priorities over writing unit-tests. An
approach called TTD (test-driven development) is more
important for XP. According to this approach, firstly, the test,
that does not initially pass (as the logic it has to check does not
exist yet) is written, than the logic that is needed to pass the test
is implemented.

Game of planning

The main goal of the game of planning is to quickly
form an approximate work plan and constantly update it as the
terms of the task become more and more clear.

Game of planning has its own participants and its
purpose. He himself reports on the need of one or another
functionality. Programmers give an approximate valuation for
each functionality. The customer and programmers have the
same goal, but everyone uses a different way to achieve it: the
customer chooses the most important tasks in accordance with
the budget and the programmer evaluates the tasks in
accordance with his capabilities for their implementation.

92

Ideally the scheduling game of customers and
programmers involvement should be conducted systematically,
before the start of the next iteration of development. This
makes it simple to make adjustments to the project accordingly
to the successes and failures of the previous iteration.

The customer is always nearby

An XP "customer" — is not the one paying the bills, but
the conclusive user of the software product. XP states that the
customer should always be available for phone calls and
questions.

Pair programming

Pair programming assumes that the entire code is
created by pairs of programmers working at the same
computer. One of them works directly with the text of the
program, while the other one looks through his work and looks
at the general picture of what is happening. During the work on
the project, the pairs are not fixed: they change so that each
programmer in the team had a good idea of the whole system.
Thus, dual programming enhances interaction within the team.

Continuous integration

In traditional techniques, integration, generally, is
performed at the very end of the work on the product, when all
components of the developing system are fully prepared. In
XP, the integration of the code of the entire system is
performed several times a day, after the developers are
convinced that all module tests are working correctly.

The main task of continuous integration is to quickly
find and fix errors, to improve the software quality and to
reduce time spent on software verification and updates.

Refactoring

Refactoring is a method of code improving without
changing its functionality. XP assumes that the code written in
the process of working on the project, will almost certainly be

93

repeatedly reworked. XP developers recycle the previously
written code to improve it.

Refactoring process is step-by-step changes
accompanied by frequent start of the tests. The refactoring
result is a pure code and a simple design.

Frequent small releases

Product releases should be put into operation as often as
possible. The amount of work on each version should take as
little time as possible. At the same time, each version should be
sufficiently meaningful in terms of usefulness for business.

The sooner the first working version of the product is
released, the better. The earlier the customer begins operating
the product, the earlier the developers receive information from
him about whether the product meets the customer's
requirements. This information can come out rather useful in
planning the next issue.

Simplicity of designing

XP proceeds from the fact that conditions of the
problem can be repeatedly changed in course of the work,
meaning that the developing product should not be designed at
once completely in advance. An attempt to design the system
in detail at the very beginning of the work is a waste of time.
XP assumes that designing is an important process than needs
to be carried out continuously throughout the whole project.
Designing should be carried out in small stages taking
constantly changing requirements into account.

System metaphor

Architecture is an idea about components of the system
and their interconnections. Developers have to analyze
software architecture in order to understand where the new
functionality should be added in the system and what will
interact with the new component.

System metaphor is an analog for what most techniques
call architecture. The metaphor of the system gives the team an

94

idea of how the system currently works, where the new
components are added and what form should they take.

Coding standards

All team members must comply with the requirements
of the general coding standards during work.

If the team does not use common coding standards, it
becomes harder for developers to refactor; there may be
complications during the change of the partner in pair
programming; project progress is slowing down.

It is necessary to ensure that it is difficult to understand
who is the actual author of certain parts of the code in the
framework of XP — the whole team works unified as a single
person. The team must come up with a set of rules, then each
member of the team must follow these rules in the process of
writing the code.

Collective ownership

Collective ownership means each team member is
responsible for the entire source code. This way everyone can
make changes to any part of the program. Pair programming
supports this practice: all programmers become acquainted
with all the parts of the system code, working in different pairs.
The important advantage of the collective ownership of the
code lies in the fact that it accelerates the development process,
because when the error is spotted, it can be corrected by any
programmer.

Microsoft Solutions Framework (MSF)

Microsoft Solutions Framework (MSF) — software
creation methodology, proposed by Microsoft. MSF bases
itself on Microsoft practical experience and describes people
and working processes management in solution development
process.

MSF methodology consists of principals, models and
personnel management, processes and technology elements
disciplines, typical for most projects.

95

MSF consists of two models and three disciplines.
MSF contains:

. models:

. project group model

. processes model

. disciplines:

. projects managing discipline

. risks managing discipline

. preparation managing discipline

Project group model

MSF (MSF Team Model) describes Microsoft
approaches for personnel project worker's organization and his
activity with a purpose of maximizing project's success. This
model determines role clusters, their competence spheres and
responsibility zones. It also determines recommendations for
members of the project group, which allows them to
successfully complete their mission of making the project a
reality.

According to the MSF model, project groups are built
as relatively not big multi-profile teams. Members of these
teams divide responsibilities and supplement each other's
cognizance area.

The MSF project group consists of six role clusters.
Each one of them is responsible for:

. program management (program manager) — solution
architecture developing, administrative service;
. development (developer) — application and

infrastructure development, technological consultation;

. testing (QAE) — nplanning, tests developing and
accounting according to tests;

. release management (release manager) —
infrastructure, accompaniment, business-processes, finished
product emission;

96

. customer satisfaction (user experience) — teaching,
ergonomics. graphical design, technical support;

. production management (product manager) —
business-priorities, marketing, representation of customer's
interests.

The MSF project group offers braking big teams (more than 10
people) apart into small multi-profile direction groups (feature
teams). These small groups work in parallel, synchronizing
their efforts regularly.

MSF process model is a general development
methodology and IT solutions introduction. The unique point
about this model lies in its application during development of
wide spread of IT projects due to its flexibility and absence of
strictly intrusive procedures. This model combines the abilities
of two standard models of life cycle: waterfall and spiral.

MSF process is oriented on milestones — key points of
the project, that define achievements within its essential
(transitional or conclusive) result. This result may be evaluated
and analyzed.

MSF process model accounts for constant project
requirements changes. It states that solution development
should consist of short cycles, which create a progressive
motion ranging from the earliest solution versions to its final
look.

Processes model includes following main phases of process
development:

« Conception developing (Envisioning)

 Planning

« Developing

« Stabilizing

 Deploying

Projects management — a specific area, during which
certain goals are being set, balancing the amount of work,
resources (such as money, labor, materials, energy, space etc.),

97

sometimes quality and risks. The key success factor for project
management is an existence of a specific plan, set in advance,
minimizing the amount of risks and plan deviations, an
effective shift management.

Risks management
Risk management is one of Microsoft Solutions Framework
(MSF) key disciplines. This process includes risk detection and
analysis; prophylaxis strategy planning and realization and
alleviating the potential consequences; tracking the state of the
risks and learning one's lessons based on the received
experience. MSF motto — we do not fight the risks - we
control them.

Preparation management

Preparation management is also one of the key
Microsoft Solutions Framework (MSF) disciplines. It is
dedicated to knowledge management, professional skills and
abilities, required for planning, creating and successful
decision accompaniment.

Dynamic Systems Development Method (DSDM)

Dynamic Systems Development Method (DSDM) - is a
software development technique based on the rapid
development concept (Rapid Application Development, RAD).

RAD (Rapid application development) - is a concept of
creating software development tools, that pays special attention
to the programming speed and convenience, the creation of a
technological process that allows the programmer to create
computer programs as fast as possible. RAD has been
widespread and approved since the end of the XX century.

Basic RAD
- The toolkit should be aimed at development time minimizing.
- Creating a prototype for customer requirements clarification.
- Development cycle: each new product is based on an
evaluation of the previous version of the customer.
- Version development time minimizing by transferring the

98

already completed modules and adding functionality to the new
version.

- The team of developers should cooperate closely and each
participant must be prepared to perform several obligations.

- Project management has to minimize the development cycle
duration.

DSDM - is and iterative approach, that gives a special
meaning to the prolonged participation of the customer (user)
in the process of working on the project. The goal of the
method is to hand over a finished project on time and to invest
in the budget, but at the same time adjusting requirements
changes of the project during its development.

DSDM is a flexible software development
methodology, as well as developments that are not part of the
IT area.

DSMD consists of three stages: pre-project, project life
cycle stage and a post-project stage. The project life stage
consists of 5 phases:

- research of the possibility to be implemented;

- economic density research;

- creating a functional model;

- modeling and development;

- implementation phase.

It is possible to include parts of other techniques, such
as the Rational Unified Process (RUP) and extreme
programming (XP), into DSDM under certain conditions.

The DSDM method was developed in the UK at the end
of the 19th - beginning of the 20th centuries by the DSDM
consortium.

Principles of DSDM
. Involving the user (customer) is the basis for
conducting an effective project, where the most accurate
decisions are made.

99

. Frequent delivery of product versions. The analysis of
versions from previous iterations is taken into consideration in
the next one.
. Methodology of development is iterative. It is based on
the customer's feedback in order to achieve the optimal
solution from and economic standpoint.
. Testing is integrated into the development lifecycle.
. Interaction and cooperation between all participants is
necessary for its effectiveness.

Preconditions for DSDM use

- it IS necessary to organize interaction between the
project team, future users and management team;

- a possibility to split the project into smaller parts,
which will allow the usage of an iterative approach

Life cycle of the project and DSDM stages

DSDM consists of three successive stages: the pre-
project stage, the life cycle stage of the project and the post-
project stage. The main stage is the life cycle stage of the
project: it consists of five phases, which form an iterative
approach to the development of information systems.

Stage 1 - pre-project

At this stage, the probable parts of the project are
identified, the fund allocation and the assignment of the project
team is carried out. Solving tasks at this stage will help prevent
problems at later stages of the project.

Stage 2 - life cycle of the project

Stages of the life cycle of the project:
- research:

- research of the opportunity to be implemented,;

- economic density research;
- creation of a functional model,
- modeling and development;
- implementation.

Stage 3 - post-project

100

Efficient operation of the system is provided at this
stage. The support of the project is held as a continuation of the
development, based on the iterative nature of DSDM. Instead
of completing the project in one cycle, it is common to go back
to previous stages or phases, in order to improve the product.

Let's look at the life cycle stage of the project

Phase 1: research

- la: research of the possibility to be
implemented

The possibility of implementing a project within the
framework of DSDM is tested during this phase.

The final result of this phase is a report on the DSDM
applicability to the project implementation, as well as an
approximate global plan of the project and a protocol of
possible project risks.

- 1b: economic density research

After recognizing the possibility of project
implementation within DSDM, business processes are checked
at this stage, groups of users are being involved, and their
needs and wishes are analyzed. The use of working groups is
the most requested method at this stage. Participants of the
project discuss the planned system within the working groups;
the received information is collected into the list of
requirements, which are distributed according to priorities.
Based on the received priorities, a development plan is created
that will serve as a benchmark for the whole project.

In order to create this plan, a very important project
methodic is used, called time-boxing. This methodic is required
to achieve the goals of DSDM: to put up with time and budget,
while maintaining the necessary quality of the product.

The result of this stage is a description of the sphere of
commercial activity, a description of the architecture of the
system and a development plan, which indicates the most
important steps in the development process.

101

Phase 2: creating a functional model

The requirements that were defined at the previous
stage are transformed into a functional model. It consists of a
prototype and models. Prototyping is the key project method at
this phase, which allows organizing an involvement of users
into the project. The developed prototype is analyzed by
different groups of users. Each iteration is tested in order to
achieve the required quality.

Creation of a functioning model can be divided into the
following sub-steps:

« Defining a functional prototype: determining a functional
that will be laid in the prototype of the current phase.

e Plans adjustment: an agreement on how and when the
prototype functionality should be developed is taking place.

o Creating a functional prototype. The prototype created
during previous iterations is studied and refined.

e An analysis of a functional prototype is to check whether
the designed system is in a good condition. Testing and
reviewing is applied.

The outcome of this phase is a functional model and a
functional prototype, which together represent the functionality
obtained in this iteration, ready for testing by the user. The list
of requirements is then updated and the already accomplished
items are removed from it. The protocol for potential risks is
also updated.

Phase 3: Design and development

The main task for this iteration is to merge the
functional components from the previous stage into a single
system, that meets the requirements of users. Testing is
underway again at this stage.

The summary for the stage is the creation of a
constructive prototype for testing by users. The tested system
than moves to the next phase. The appearance and functionality

102

of the system are generally ready at this stage. Another result
the creation of custom documentation.

Phase 4: implementation

At the implementation stage, the tested system, along
with the user documentation, are delivered to future users and
their training with the system is carried out. The system is
analyzed to meet the requirements set at the early stages of the
project.

Implementation can be divided into the following sub-
phases:
 System approval by the user: conclusive users approve the
tested system for further implementation.
« User training: training the future user to operate the system.
« Implementation: implementation of the tested system among
users.
 Market of the system analysis: analysis of the influence of the
released system on the market. The main question is whether
the goal, set for designing the system, has been achieved.

Based on this, the project either moves on to the next stage or

returns to the previous one further refinements.

Stage summary: a finished system, suitable for usage by
conclusive users, and a detailed project analysis document.

Basic DSDM methodics
. Time-boxing

Time boxing is one of the main DSDM methodics. It is
used to achieve the main objectives of DSDM: to develop the
information system in time, to commit to the budget while
maintaining quality. The main idea of time-boxing is to divide
the whole project into parts, each one with its own budget and
time limits.
. MoSCoW

MoSCoW method opens up a way to divide objects by
priority. In the context of DSDM, the MoSCoW method is used
to prioritize requirements. The abbreviation stands for:

103

- MUST - the requirements MUST meet the economic
needs.

- SHOULD — SHOULD this requirement be met, if the
project does not depend on its success.

- COULD - whether you COULD leave this
requirement if it is not applicable to the business need of the
project.

- WON'T - whether you WON'T be able to postpone
the fulfillment of the requirement if you still have time to
spare.

. Prototyping

This methodic relates to the creation of the prototypes
of the system during its development in the early stages. It
allows you to identify deficiencies in the system and allows
future users to test it. Thus user engagement in work is
implemented, being one of the success key factors of the
DSDM method.

. Testing

The third and important part of achieving the DSDM
goal is to create a high-quality information system. In order to
achieve this, the DSDM system insists on conducting the
testing of each iteration. The project team is free to choose the
way to manage the testing.

. Workgroup

This is one of the DSDM methodics, which aims to
bring together different participants of the project in order to
discuss the requirements, functionality and adjust mutual
understanding.

. Modeling

This methodic is mandatory and is used to visualize the
individual side of the system or sphere of activity in the form
of diagrams. Simulation provides a better understanding of the
project's business activity for the entire team.

. Configuration management

104

A good implementation of the configuration
management technique is important, because of the dynamic
nature of DSDM. A strict control over the quality of the
products is required, since they are released quite often.

1.10. METHODS OF TESTING AND ADJUSTING
PROGRAMS AND SYSTEMS

The fundamental concept of SS design includes basic
conditions, strategies and methods, that are used in LC
processes and provide testing (verification) on a multitude of
trial data sets. The SS designing methods include structural,
object-oriented and other methods. They are based on
theoretical, instrumental and applied tools that influence the
testing process.

Testing is a process of identifying errors in software by
executing the source code of the SS on the test data, collecting
performance data in the performance dynamics in a specific
operating environment, detecting various errors, defects,
failures and bugs, caused by irregular and abnormal situations
or accidental software termination. Organizational aspects play
an important role in the conduct of verification and testing: the
activity of a group of specialists who plan these processes,
preparation of tested data and monitoring of tests.

Processes of LC (life cycle) of verification and validation of
programs

Verification and validation as methods ensure,
respectively, the verification and analysis of the correct
implementation of the specified functions and software
compliance with the requirements of the customer, as well as
assigned specifications. In standards, they are presented as
independent LC processes and are used starting from the stage
of the analysis of requirements and finishing with a verification
of the correctness of the code functioning at the final stage,
namely, testing.

105

For these processes, the goals, tasks and actions for
verifying the correctness of the created product (working,
intermediate products) are defined at the stages of the LC. Let's
look at their interpretation:

1.1. Verification process

The goal of the project - is to make sure that each
software product of the project reflects the agreed requirements
for their implementation. The process is based on:

 strategy and verification criteria for all working
software products;

« implementation of standard actions of verification;

 eliminating the shortcomings found in software
products;

« on agreed results of verification with the customer.

The verification process can be carried out by the
program executor or another employee of the same
organization or an employee of another organization, such as
the customer. This process includes actions for its
implementation and execution.

The implementation of the process is to identify critical
elements (processes and software products) that have to be
verified, the choice of the verifier, the tools supporting the
verification process, the preparation of the verification plan and
its approval. When verifying according to the plan and
requirements of the customer, the correctness of the system
functions, interfaces and interconnections of the components,
as well as access to the data and to the means of protection are
checked.

1.2. Validation process

The goal of the process is to make sure that the specific
requirements for the software product are met, and this is
accomplished by:

« developed strategy and validation criteria for all work
products;

106

+ conditioned validation actions;

* demonstration of the developed software products
accordance to the requirements of the customer and rules of
their use;

« coordination of the results of validation with the
customer.

Validation process can be carried out by the executor or
another person, for example, the customer, who is taking
actions on the implementation and execution of this process
according to the plan, which displays the elements and tasks of
verification. It uses methods, tools and procedures to perform
the tasks of the process to establish compliance test
requirements and features of the use of project software
products.

Additional actions are taken at other stages of LC:

* checking and controlling design decisions with the
help of revision of the working process techniques and
methods;

* access to the CASE-system, which contain procedures
for checking product requirements;

 reviews and inspections of the interim results for
compliance with their requirements in order to confirm that the
software meets the requirements and satisfies the conditions of
the system execution.

Thus, the main task of the verification and validation
processes lies in verification and confirmation, that the
conclusive product meets its purpose and satisfies the
requirements of the customer. These processes are
interconnected and are usually defined by a common term
"verification and validation" (V & V).

V & V is based on process planning and verification for
the most crucial elements of the project: a component,
interfaces (software, technical and informational), objects

107

interactions (protocols and messages) and data transfers
between components and their protection.

After checking individual components of the system,
they integrate, re-verify and validate the integrated system; a
set of documentation is created that reflects the accuracy of the
verification of requirements formation, inspection results and
testing.

Programs testing

Testing can be interpreted as a process of semantic
debugging (verification) of the program, which consists in
executing the sequence of different sets of final tests for which
the result is known beforehand. That is, the testing involves the
implementation of the program and obtaining concrete results
of the tests.

Tests are gathered up so that they cover as many types
of situations as possible in the program algorithm. The less
strict requirement is for every brunch to be executed at least
once.

Historically, the first kind of testing was debugging.

Debugging is a verification of a description of a
software object in order to detect errors and their further
elimination. Compilers detect errors with their syntactic
control. After that, a verification is carried out to verify the
correct code and validation to verify the compliance of the
product with the requirements.

The purpose of the test is to check the performance of
the functions implemented in accordance with their
specifications. Functional tests are created based on the basis of
external specifications of functions and design information on
the processes of the LC. Due to those tests, the testing is
conducted taking into account the requirements, formulated at
the stage of domain analysis.

Methods of functional testing are divided into static and
dynamic.

108

Static testing methods

Static methods are used during inspections and
consideration of component specifications without their
execution. The technique of static analysis lies in
methodological review and analysis of the structure of the
programs, as well as in proving their correctness. Static
analysis is aimed at analyzing the documents developed at all
stages of the LC and exists in order to inspect the source code
and cross-check of the program. Software Inspection is a
static verification of the program's compliance with the given
specifications. It is carried out by analyzing various
representations of the results of the projection
(documentations, requirements, specifications, schemes or
source code of programs) in the process of LC. Reviews and
inspections of the projecting results and their compliance with
the customer's requirements provide a higher quality of the
created LC. Documents of the operational design of LC are
reviewed during the inspection of the program alongside with
independent experts and participants of the development of the
LC. At the initial designing stage, the inspection involves
verification of completeness, integrity, singularity, consistency
and compatibility of documents with the initial requirements to
the software system. At the stage of implementation of the
system, inspection refers to the analysis of the texts of
programs to comply with the requirements of standards and
adopted guidance documents of programming technology.The
effectiveness of this examination is that the involved experts
try to look at the problem "from a different angle” and subject
it to a comprehensive critical analysis.

Dynamic testing methods

Dynamic testing methods are wused in the
implementation of programs. They are based on a graph that
binds the causes of errors with the expected responses to these
errors. In the process of testing, the information, accumulated

109

on the errors, is used in assessing the reliability and quality of
the SS.

Dynamic testing is oriented at verifying the correctness
of the SS based on a number of tests with purpose of checking
and collecting data at the stages of LC and conducting the
measurements of individual indicators (the number of failures,
malfunctions) of testing to assess the quality characteristics
specified in the requirements. Testing is based on systematic,
static (probabilistic) and simulation methods.

Let's give them a short reference.

Systematic testing methods are divided into methods in
which programs are viewed as a "black box" (using
information about a solvable problem), and methods, in which
the program is viewed as a "white box (using structure of the
program). This type is called data management testing or input
/ output management. Its purpose is to clarify the
circumstances in which the behavior of the program does not
meet its specifications. In this case, the number of errors found
in the program is a criterion for the quality of the input testing.

The purpose of the dynamic testing of programs relies
on the principle of the "black box" - the detection of the
maximum number of errors with a single test using a small
subset of possible input data.

Functional testing

The purpose of functional testing is to identify
inconsistencies between the actual behavior of the
implemented functions and the expected behavior in
accordance with the specification and output requirements.
Functional tests should cover all implemented functions, taking
into account the most common types of errors.

The tasks of functional testing include:

* Identification of a set of functional requirements;

110

* identification of external functions and the
construction of a sequence of functions in accordance with
their use in the SS;

« identification of the set amount of input data of each
function and determination of areas of their alteration;

« construction of test kits and function testing scripts;

* Identification and presentation of all functional
requirements through test kits and testing for errors in the
program and in conjunction with the environment.

Tests created by project information are related to data
structures, algorithms, interfaces between individual
components, and are used to test components and their
interfaces. The main objective is to ensure the completeness
and consistency of the implemented functions and the
interfaces between them.

The combined method of "black box™ and "white box"
is based on the division of the input field of a function on the
subfield of error detection. The subfield contains homogeneous
elements that are processed correctly or incorrectly. To test the
subfield, the execution of the program is performed on one of
the elements of this field.

Infrastructure of the testing process of the SS

When talking about infrastructure of the testing
process, it means:

«allocating of testing subjects;

ecarrying out the error classification for the regarded
class of tested programs;

* preparation of tests, their execution and search for
various kinds of bugs and errors in components and in the
system as a whole;

* service of conduction and management of the testing
process;

« analysis of test results.

111

Test objects are components, group of components,
subsystems and systems. A testing strategy is being developed
for each one of them. If the testing object refers to "white box"
or "black box™ while the compound of components is
unknown, then the testing is done by inputting the input test
data to obtain the source data. The strategic goal of testing is to
make sure that each considered input data set corresponds to
the expected output data. With this testing approach the
internal structure knowledge and knowledge of logic of the
tested object is unnecessary.

The test designer has to look inside the "black box™ and
explore the details of the data processing, protection and data
recovery issues, as well as interfaces with other programs and
systems.

For some types of objects, the testing team can not
generate a representative set of test kits that demonstrate the
functional integrity of the component at all possible test kits.
Therefore the "white box" method is advisable, which allows
you to use the structure of the object to organize testing on
different branches. For example, you can run test Kits that pass
through all operators or all checkpoints of the component in
order to make sure in to make sure they work properly.

Methods of searching for errors in programs

The international ANSI/IEEE standard separates all
errors in the development of programs into the following types:

» Error - a state of a program, in which the wrong
results are given due to defects in the program operators or in
the technological process of the development, which leads to
an incorrect interpretation of the source information, and
therefore to the wrong decision.

« A fault is a consequence of the developer's errors at
any of the stages of development. They can be contained in the
initial or project specifications, program code texts, operational

112

documentation, etc. A defect or a failure can be detected in the
process of execution of the program.

* Failure is a refusal of the program to function or an
inability to perform the functions defined by the requirements
and limitations. It is considered as an event to be the cause of

the transition of the program into a non-operating state
due to errors, hidden somewhere in the program or due to
failures in the functioning environment.

All of the potential mistakes in the program are divided
into the following classes:

* logical and functional errors;

« calculation and runtime errors;

* input/output and data manipulation errors;

« interface errors;

« errors of data capacity, etc.

Logical errors are the reason for the violation of the
logic of the algorithm, the internal inconsistency of variables
and operators, as well as the rules of programming. Functional
errors are the result of improperly defined functions, violation
of the order of their application or a lack of completeness of
their implementation, etc.

Calculation errors usually come up as a result of
inaccuracy of the initial data and implemented formulas,
mistakes in the methods, misuse of operations of calculations
or operands. Runtime errors are caused by a failure to provide
the required processing speed or recovery time.

Input/output and data manipulation errors are the result
of poor data preparation for execution of the program, failures
in entering or sampling them in the database.

Interface errors relate to the mistakes of the
relationship of individual elements with each other, which
manifests itself in the transmission of data among them as well
as when interacting with the environment of functioning.

113

Capacity errors relate to data and are a consequence of
the fact that implemented methods of access and database
capacities do not meet the actual capacities of information of
the system or the intensity of their processing.

These basic classes of errors are inherent in different
types of software components and they appear in programs in
different forms. Thus, when working with DB errors of data
management and manipulation, logical errors in the task of
application procedures of data processing appear.
Computational errors prevail n computing programs, while
there are logical and functional errors in the management and
processing programs. Software that consists of many multiple
programs that implement different functions may contain
different types of errors. Interface errors and capacity
violations are typical for any type of system.

Analysis of the types of errors in the programs is a
prerequisite for creating test plans and testing methods to
ensure software correctness. At the present stage of the
software development support tools (CASE technologies,
object-oriented methods and tools for models and programs
designing) a specific projecting is carried out: the software is
protected from the most typical errors and therefore prevents
the occurrence of software defects.

Classification of errors and tests

Errors

Based on long-term activity in the field of software
development, different firms have created their classification of
errors, grounded on identifying the reasons for their appearance
in the development process, in the functions and in the field of
functional activities of the software.

We know many different approaches to the
classification of errors, let's take a look at some of them.

114

IBM has developed an approach to the classification of
errors, which involves the breakdown of errors into categories
with developers being responsible for them (table 1.10.1).

Table 1.10.1
Classification of errors (developed by IBM)

Context Classification of errors
errors
Function Interface errors of conclusive users caused by
hardware or related to global data structures.
Interface Errors in interaction with other components, in
calls, macros, control blocks or in the list of
settings.
Logic ”Errors in program logic, as well as in the use of
ariables.
Assignment Errors in the data structure or in initializing the
ariables of individual parts of the program.
Looping

ime distribution.

Environment |Errors in the repository, in the management of|
changes or in conclusive versions of the
project.

Algorithm Errors associated with ensuring the efficiency,

correctness of algorithms or data structures of|

he system.

Errors in maintenance documents records or in

publications.

LErrors caused by time resource, real time or

Documentation

Hewlett-Packard used the Butch classification by
setting the percentages of errors found in the software at
different stages of development (Fig. 1.10.1)

115

o
data management

documentations

calculations

requirements

integration
logic

Fig. 1.10.1. Hewlett-Packard errors classification

Tests
Let's look at a classification of the verification tests on

tested objects at the main stages of development:

v Testing of specifications

- checking the completeness and consistency of
functions;

- checking of interfaces consistency.

v Program testing

- verifications of the structure of the program;

- verifications of calculations and data
transformations.

v’ Testing of the complex

- checking the structure of the complex;

- checking the component interface;

- checking the memory limit;

- checking the execution duration;

- checking the completeness of the complex
problems solving.

v Tests during trial

- compliance verification;

116

- checking the convenience of the installation of the
working version;
- checking the working process of the complex on
the equipment;
- user interface verification;
- checking the comfort of the escort.
Software testing service

Developers and customers are both responsible for
testing.

In order to achieve the testing objectives, a software
verification service is usually created - a team of testers that
does not depend on the state of the developers of the software.
This team includes analysts, programmers, test engineers.

Testers compile test plans, test data and scripts, as well
as test schedules from the very beginning. Professional testers
work in conjunction with the configuration management team
in order to provide their documentation and other mechanisms
for linking each other with the requirements of the project,
configuration, and code.

Many experts compare the testing system with the
creation of a new system, in which analysts reflect the needs
and objectives of the customer, working together with
designers and seeking to implement the ideas and principles of
the system. The errors found in the program and changes in the
system are reflected in the documentation, requirements,
projects, as well as in the descriptions of input and output data
or in other developed artifacts. The changes made during the
development process lead to the modification of the test
scenarios or, to a large extent, to the change of the testing
plans. Configuration management specialists take these
changes into account and coordinate compilation of tests.

The test team also includes users. They evaluate the
results, utilization simplicity, and also express their opinion
about the principles of the system.

117

Testing process management

All software testing methods are merged into a
database, which contains the results of the system testing. It
contains all the components, test data, test results, and
information about documenting the testing process.

The project database is supported by special tools, like
CASE, which provide analysis, object data collection, data
flows, etc. The project database also stores the initial and
referenced data, used to compare the data accumulated in the
database to the data obtained during the system testing.

Various types of calculations of the characteristics of
this process and the methods of planning and management are
carried out during the testing process:

- calculation of the duration of the performance of
functions by collecting average performance of operators index
without executing the program on the machine. Some
components appear, which require a huge amount of time in
the real environment;

- the management of the implementation of the test by
selecting the tests of verification, their execution, conducting a
comparison with the reference values. The results of this
process are displayed on the screen, for example, in a graphical
form (path through the graph of the program), in the form of
UML diagrams, data on the failures and errors, or specific
values of the output arguments of the program. This data is
analyzed by the developers to formulate the conclusions about
directions of further verification of the correctness of the
program or their completion.

- Testing planning is intended for the distribution of the
terms of testing work, the distribution of testers for certain
types of work and their ability to compile tests for system
testing. Certain tests, criteria an input values are created during
the process of coming up with the plan for execution paths.

118

1.11. MODELS OF QUALITY AND RELIABILITY
IN SOFTWARE ENGINEERING

The development of the PS reached such a level of
development that it became necessary to use engineering
methods, including for evaluating the results of design at the
LC stages, monitoring the achievement of quality indicators
and metric analysis thereof, assessing the risk and the degree of
use of the finished components to reduce the cost of developing
a new project. The basis of engineering methods in
programming is a quality improvement, for the achievement of
which methods for determining quality requirements,
approaches to selecting and improving models of metric
analysis of quality indicators, methods for quantitative
measurement of quality indicators at the LC stages were
formed.

Software quality is the subject of standardization.
Standard GOST 2844-94 defines the quality of software as a
set of properties (quality indicators) software that provides its
ability to meet the needs of the customer in accordance with
the purpose. This standard regulates the basic model of quality
and indicators, the main one among them is reliability. The ISO
/ 1IEC 12207 standard defined not only the main processes of
the PC's development of the PS but also the organizational and
additional processes that govern the engineering, planning and
quality management of the PS.

According to the standard at the stages of the LC,
software quality control should be carried out:

o verification of compliance with the requirements of the
product and the criteria for achieving them;
o verification and certification (validation) of the

intermediate results of the software in the phases of the LC and
measuring the degree of satisfaction of the individual indicators
achieved; testing of the finished PS, a collection of data on
failures, defects and other errors detected in the system;

119

. selection of reliability models for assessing reliability
based on the results of testing (defects, failures, etc.);
. assessment of quality indicators specified in the
requirements for the development of the PS.
The following describes models of quality and reliability, as
well as ways to use them.
Software quality model

Software quality is a relative concept that makes sense
only when real conditions of its application are taken into
account, therefore, the requirements for quality are set in
accordance with the conditions and the specific area of their
application. It is characterized by three aspects: the quality of
the software product, the quality of the LC processes and
quality of support or implementation (fig. 1.11.1)

The quality of the Product quality Quality of
process support
Software The effect of
Processes of product software

i< imple mentation

Fig. 1.11.1. The main aspects of software quality

The quality of the product is achieved by the procedures
for controlling intermediate products on the LC processes, by
checking them for achieving the required quality, and by the
methods of accompanying the product. The effect of
implementing the PS is largely dependent on the knowledge of
the staff of the product functions and the rules for their
implementation.

The software quality model has the following four
levels of presentation.

120

The first level corresponds to the definition of

characteristics (indicators) of software quality, each of which
reflects a separate point of view of the user on the quality.
According to the standard, the quality model includes six
characteristics or six quality indicators:
functionality;
reliability;
usability;
efficiency;
maintainability;
portability.
The attributes for each quality characteristic
corresponds to the second level that detail the different aspects
of a particular characteristic. A set of attributes of quality
characteristics is used in assessing quality.

The third level is designed to measure quality with the
help of metrics, each of them according to the standard is
defined as a combination of the method of measuring the
attribute and the scale of measuring the values of attributes. To
assess the quality attributes at the LC stages (when reviewing
documentation, programs and test results of programs), metrics
with a given estimated weight are used to level the results of
the metric analysis of the aggregate attributes of a particular
indicator and the quality as a whole. The quality attribute is
determined using one or more evaluation methods at the LC
stages and at the final stage of software development.

The fourth level is the estimated element of the metric
(weight), which is used to estimate the quantitative or
qualitative value of a separate attribute of the software
indicator. Depending on the purpose, features, and conditions
of software maintenance, the most important quality
characteristics and their attributes are selected.

The selected attributes and their priorities are reflected in the
requirements for system development or the corresponding

ogakrwdE

121

priorities of the software class standard to which this software
applies.

Characteristics of quality indicators

The characteristics of the software quality indicators are
shown in Fig.1.11.2

1. Functionality is a set of properties that determine the
ability of a software to perform a list of functions in a given
environment and in accordance with the processing
requirements and system-wide means. A function is understood
as an ordered sequence of actions to satisfy consumer
properties. Functions are a target (basic) and auxiliary.

The attributes of functionality include:
functional completeness is a component property that shows
the degree of sufficiency of the main functions for solving
problems in accordance with the purpose of the software;

o correctness (accuracy) is an attribute that indicates the
degree to which the correct results are achieved,;
o Interoperability is an attribute that shows the ability to

interact with software by special systems and environments
(OS, network);

o security - an attribute that indicates the ability of the
software to prevent unauthorized access (accidental or willful)
to programs and data.

2. Reliability is a collection of attributes that determine
the software's ability to convert raw data into results under
conditions that depend on the lifetime period (wear and aging
are not taken into account). The decrease in software reliability
occurs due to errors in requirements, designing, and
implementation. Refusals and errors in programs appear for a
specified period of time.

he sub-characteristics of software reliability include:

o Fault-freeness is an attribute that determines the ability
of a software to function without failures (both programs and
equipment);

122

Completeness

Frecizion

Functionality

Interoperability

Secure

Lonzistency

N N S N | E—

Completeness

Reliahility

Fault tolerance

Henswabimy

Lonsistency

ety

LIl 1L Il 1

Eaze of uze

Hoility to [eam

o oW E o om

ALt eness

Lonsistency

Fnalyze

Iy S S

Hemowabilby

Accampanying

- = — o
I

stabity

lsting

Lonsistency

L L L JL ol 1

Fieactivity

Efficiency

Uitk of resonnces

Lonzistency

Faaptabiiy

LJL Il 1

Earytosetap

Fortability

Lompatibilty

74NN NG| NS/ N7 N7 N

Substiutabiity

Lonzistency

N N S N) S

Fig. 1.11.2. Model of software quality characteristics

123

o resistance to errors is an attribute that indicates the
software's ability to perform functions under abnormal
conditions (hardware failure, data and interface errors,
violation of operator actions, etc.);

o restore ability is an attribute that indicates the ability of
the program to restart for re-execution and recovery of data
after failures.

3. The ease of use is characterized by a multitude of
attributes that show the necessary and suitable conditions for
use (dialog or non-dialog) of the software by a specified range
of users to obtain relevant results. In the standard, the usability
is defined as a specific set of attributes of the software product,
characterizing its ergonomics.

The sub-characteristics of ease of use include:

o understandability - an attribute that determines the
effort spent on recognizing the logical concepts and conditions
for using the software;

o study ability (ease of learning) is an attribute that
determines the user's efforts to determine the applicability of
the software by using operational control, diagnostics, and
procedures, rules, and documentation;

o efficiency - an attribute that indicates the response of
the system when performing operations and operational
control,

o consistency is an attribute that shows the compliance of
a development with the requirements of standards, agreements,
rules, laws, and regulations.

4. Efficiency is a set of attributes that determine the
relationship between the levels of software execution, the use
of resources (tools, equipment, materials - paper for the printer,
etc.) and services performed by the staff, etc.

To the sub-characteristics of the effectiveness of the software
are:

124

- reactivity is an attribute that shows the response time,
processing, and execution of functions;

- resource efficiency - an attribute that shows the amount and
duration of resources used when executing software functions;
- consistency is an attribute that shows the correspondence of
this attribute with the specified standards, rules and regulations.

5. The accompaniment is a set of properties that show
the efforts that need to be spent on making modifications that
include updating, improving and adapting the software when
the environment, requirements, or functional specifications
change.

Accompaniment includes the sub-characteristics:

- analysability is an attribute that determines the
necessary effort to diagnose failures or identify parts that will
be modified,;

- variability is an attribute that determines the removal
of errors in the software or the introduction of changes to
eliminate them, as well as the introduction of new features in
the software or in the operating environment;

- stability - an attribute indicating the constancy of the
structure and the risk of its modification;

- testability is an attribute that demonstrates the efforts
to perform validation and verification in order to detect
inconsistencies in requirements, as well as the need for
software modification and certification;

- consistency is an attribute that shows the
correspondence of this attribute to conventions, rules, and
regulations of the standard.

6. Portability - the set of indicators that point to the
ability of the software to adapt to the new environment of the
runtime. The medium may be organizational, hardware and
software. Therefore, the transfer of software into a new runtime
environment can be associated with a set of actions aimed at
ensuring its functioning in an environment different from the

125

environment in which it was created taking into account new
programmatic, organizational and technical capabilities.

Portability includes sub-characteristics:

- adaptivity - an attribute that determines the effort
spent on adapting to different environments;

- customizability (ease of installation) - an attribute that
determines the necessary effort to run this software in a special
environment;

- coexistence - an attribute that determines the
possibility of using special software in the environment of the
current system;

- replaceability - an attribute that provides the
possibility of interoperability when working together with
other programs with the necessary installation or adaptation of
software;

- consistency - an attribute that indicates compliance
with standards or software transfer agreements.

Software quality metrics

At present, the system of metrics has not yet been fully
developed in software engineering. There are different
approaches to determining their set and methods of
measurement.

The measurement system includes metrics and
measurement models that are used to quantify software quality.

When determining the software requirements, the
external characteristics and their attributes (sub-characteristics)
corresponding to them are defined, which determine the
different aspects of product management in a given
environment. For a set of quality characteristics of software,
given in the requirements, the relevant metrics, models for their
evaluation and the range of values of measures for measuring
individual quality attributes.

According to the standard, metrics are defined by the
software attribute measurement model at all stages of the LC

126

(intermediate, internal metric) and especially during the testing
or operational phase (external metrics) of the product.

Let us dwell on the classification of software metrics,
the rules for conducting metric analysis and the process of
measuring them.

Types of Metrics

There are three types of metrics:
. software product metrics that are used to measure its
characteristics - properties;
. process metrics that are used to measure the process
property of the product creation process.
. usage metrics.

The metrics of the software product include:
. external metrics that indicate product properties visible
to the user;
. internal metrics that denote properties visible only to

the development team.

External product metrics are metrics:

o product reliability, which serves to determine the
number of defects;

. functionality, through which the presence and
correctness of the implementation of functions in the product;

. tracking, by which the resources of the product are
measured (speed, memory, environment), the applicability of
the product, which help determine the degree of availability for
study and use;

. cost, which determines the cost of the created product.
Internal product metrics include:

. size metrics needed to measure a product using its
internal characteristics;

. complexity metrics required to determine the
complexity of the product;

127

o style metrics that serve to define approaches and
technologies for creating individual components of a product
and its documents.
Internal metrics allow you to determine product performance
and are relevant to external metrics.
External and internal metrics are specified at the stage of the
formation of software requirements and are the subject of
planning and managing the achievement of the quality of the
final software product.

The development time, the number of errors found
during the testing phase, etc. can be as the process metrics.
Practically the following process metrics are used:

o total development time and separately time for each
stage;

. modification time;

. time of work on the process;

. number of errors found during inspection;

. cost of quality control,

o the cost of the development process.

Usage Metrics serve to measure the degree of
satisfaction of the user's needs when solving his tasks. They
help to evaluate not the properties of the program itself, but the
results of its operation - the operational quality. An example
can serve - the accuracy and completeness of the
implementation of user tasks, as well as the spent resources
(labor, productivity, etc.) to effectively solve the tasks of the
user. The user's requirements are assessed using external
metrics.

Standard assessment values of quality indicators

Evaluation of software quality according to the four-
level model of quality begins with the lower level of the
hierarchy, i.e. from the most elementary property of the
evaluated attribute of the quality index according to the
established measures. At the design stage, the values of the

128

evaluation elements for each attribute of the indicator of the
analyzed software included in the requirements.

Quality metrics are used in assessing the degree of
testability with the help of data (failure-free work, the
feasibility of functions, the usability of user interfaces,
databases, etc.) after testing software on a variety of tests.

MTBF as an attribute of reliability determines the
average time between the emergence of security threats and
provides a hard-to-measure estimate of damage that is caused
by appropriate threats. Very often the evaluation of the
program is based on the number of lines. When comparing two
programs that implement one application task, a short program
is preferred, as it is created by more qualified personnel and
has fewer hidden errors and is easier to modify. At the cost, it
IS more expensive, although the time for debugging and
modification takes more. Those. the length of the program can
be used as an auxiliary property for comparing programs,
taking into account the same developer skills, a single style of
development and a common environment.

Based on the measurement of quantitative
characteristics and the examination of qualitative indicators
using weighting factors that neutralize different indicators, the
final evaluation of product quality is calculated by summing
the results by individual indicators and comparing them with
the reference software indicators (cost, time, resources, etc.).

Ultimately, the result of the quality assessment is a
criterion for the effectiveness and appropriateness of applying
design methods, tools, and techniques for evaluating the results
of creating a software product at the stages of the LC.

To express an assessment of the values of quality
indicators, a standard is used in which the following methods
are presented: measuring, registration, calculation, and expert
(and combinations of these methods).

129

The measuring method is based on the use of measuring
and special software to obtain information about the
characteristics of software, for example, determining the
volume, the number of lines of code, operators, the number of
branches in the program, the number of entry points (output),
reactivity, etc.

The registration method is used to calculate the time,
the number of failures or failures, the beginning and the end of
the software during its execution.

The calculation method is based on statistical data
collected during testing, operation and maintenance of the
software. Calculation methods assess the reliability, accuracy,
stability, reactivity, etc.

The expert method is carried out by a group of expert-
specialists who are competent in solving this task or the type of
software. Their evaluation is based on experience and intuition,
and not on immediate results of calculations or experiments.
This method is carried out by viewing programs, codes,
accompanying documents and contributes to a qualitative
assessment of the created product. For this purpose, controlled
characteristics are established that are correlated with one or
more quality indicators and are included in expert
questionnaires. The method is used in assessing such indicators
as the analyticity, documentation, structuring of software, etc.

PS quality management

Quality management refers to the totality of the
organizational structure and responsible persons, as well as the
procedures, processes, and resources for planning and
managing the achievement of the quality of the PS. Quality
Management - SQM (Software Quality Management) is based
on the application of standard provisions for quality assurance -
SQA (Software Quality Assurance).

130

The objective of the SQA process is to ensure that
products and processes are consistent with the requirements,
consistent with the plans and include the following activities:

. implementation of standards and relevant procedures
for the development of the PC at the stages of the LC;

. assessment of compliance with these standards and
procedures. The quality guarantee is as follows:

. check consistency and feasibility of plans;

o harmonization of intermediate work products with
planned indicators;

o verification of manufactured products to specified
requirements;

o analysis of applied processes for compliance with the
contract and plans;

o agreement with the customer environment and product
development methods;

o check the accepted metrics of products, processes, and

methods of measuring them in accordance with the approved
standard and measurement procedures.

The purpose of the SQM management process is
monitoring (systematic control) of quality to ensure that the
product will satisfy.

Quality engineering includes a set of methods and
activities through which software products are tested to meet
quality requirements and are supplied with the characteristics
required by the software requirements.

Quality system (QS) is a set of organizational structures,
methods, activities, processes, and resources for implementing
quality management. Two approaches are used to ensure the
required level of software quality. One of them is focused on
the final software product, and the second - in the process of
creating a product.

Planning for quality is an activity aimed at defining
goals and requirements for quality. It encompasses

131

identification, setting goals, quality requirements, classification
and quality assessment. A calendar plan is drawn up for the
analysis of the state of development and the subsequent
measurement of the planned indicators and criteria at the stages
of the LC.

Models of reliability assessment

Of all the areas of software engineering, the reliability
of the PS is the most explored area. It was preceded by the
development of the theory of reliability of technical means,
which had an impact on the development of reliability of the
substation. PS software developers dealt with PS reliability,
trying to provide reliability that satisfies the customer by
various system means, as well as theorists who, studying the
nature of PS functioning, created mathematical reliability
models that take into account different aspects of PS operation
(errors, failures, failures, etc.) and allowing to estimate real
reliability. As a result, the reliability of the PS was formed as
an independent theoretical and applied science.

The reliability of complex PCs differs significantly
from the reliability of the equipment. Data carriers (files,
server, etc.) have high reliability, records on them can be stored
for a long time without destruction since they are not subject to
physical destruction.

From the point of view of applied science, reliability is
the ability of the PS to retain its properties (reliability, stability,
etc.), Convert raw data to results for a certain period of time
under certain operating conditions. The decrease in reliability
of the substation occurs due to errors in requirements, design,
and implementation. Failures and errors, depending on their
performance and time in the programs when they are executed
for a certain period of time.

For many systems (programs and data), reliability is the
main target function of implementation. To some types of
systems (real-time, radar systems, security systems, medical

132

equipment with built-in programs, etc.) high-reliability
requirements are imposed, such as the absence of errors,
reliability, safety, etc.

Thus, the evaluation of the reliability of the PS depends
on the number of remaining and not eliminated errors in the
programs. During the operation of the MS, errors are detected
and eliminated. If no new or at least new errors are introduced
in the correction of errors, then it eliminates the reliability of
the PS continuously during operation. The more intensive the
operation, the more errors are detected and the reliability of the
system grows faster and, accordingly, its quality.

Reliability is a function of the errors remaining in the
MS after commissioning it. PS without errors is absolutely
reliable. But for large programs, absolute reliability is almost
unattainable. The remaining undetected errors manifest
themselves from time to time under certain conditions (for
example, with a certain set of initial data) to maintain and
operate the system.

To assess the reliability of the PS, statistical indicators
such as probability and time of trouble-free operation, the
possibility of failure and frequency (intensity) of failures are
used. Since only errors in the program that can not be
eliminated are considered as the causes of failures, the PS
should be classified as a class of non-renewable systems.

Reliability assurance factors include:

o risk as a combination of threats leading to adverse
consequences and damage to the system or environment;

o threat as a manifestation of instability that violates the
security of the system;

o risk analysis - the study of the threat or risk, their
frequency, and consequences;

. integrity - the ability of the system to maintain the

stability of the work and not have a risk.

133

Risk converts and reduces reliability properties, since
the detected errors can lead to a threat if the failures are of a
frequency nature.

Basic concepts in reliability issues of PS

Formally, the reliability assessment models for PS are
based on reliability theory and mathematical apparatus with the
assumption of some constraints affecting this estimate. The
main source of information used in reliability models is the
testing, operation of the PS and various kinds of situations that
arise in them. Situations are generated by the occurrence of
errors in the MS and require their elimination to continue
testing.

Classification of models of reliability

As is known, at the given time a large number of
reliability models for PS and their modifications have been
developed. Each of these models defines a reliability function
that can be calculated by assigning to it the relevant data
collected during the operation of the MS. The main data are
failures and time. Other additional parameters are associated
with the type of MS, environmental conditions and data (fig.
11.3).

In view of the wide variety of reliability models, several
approaches to the classification of these models have been
developed. Such approaches are generally based on a history of
errors in the tested and tested MS at the LC stages. One
classification of software reliability models is the Hatch
classification. It proposes the division of models into
predictive, measurement and evaluation.

Predictive reliability models are based on measuring the
technical characteristics of the created program: length,
complexity, the number of cycles and the degree of their
nesting, the number of errors on the page of program operators,
etc.

134

For example, the Motley-Brooks model is based on the
length and complexity of the program structure (number of
branches, cycles, nesting cycles), the number and types of
variables, and interfaces. In these models, the length of the
program serves to predict the number of errors, for example,
for 100 program operators, you can simulate the failure rate.

software systems

predictive measuring estimated

I ' } I ' !

data area
Holsted Model models models selection models of
e model ! Motley E without with models seeding
Brooks counting errors errors
errors calculatio

Models of reliability of ’

Fig. 1.11.3. Models of reliability

Measuring models are designed to measure the reliability
of software that works with a given external environment. They
have the following limitations:

. the software is not modified during the reliability
properties measurement period;

o the detected errors are not corrected,;

o reliability measurement is performed for a fixed

software configuration.

A typical example of such models are the Nelson and
Ramamurti Bastani and others models. The Nelson reliability
assessment model is based on the fulfillment of the k-runs of
the program in testing and allows determining reliability. Thus,
this model considers the quantitative data on the runs carried
out.

Evaluation models are based on a series of test runs and
are conducted during the testing phases of the PC. The test

135

environment is determined by the probability of failure of the
program when it is executed or testing.

These types of models can be used in the LC stages. In
addition, the results of predictive models can be used as inputs
to the evaluation model.

Another kind of classification of models suggested by
Goel, according to which the reliability models are based on
failures and are divided into four classes of models:

o without counting of errors;

with calculation of failures;

with overseeding of errors;

models with a choice of input ranges.

Models without error counting are based on measuring
the time interval between failures and allow to predict the
number of errors remaining in the program. After each failure,
reliability is evaluated and the average time until the next
failure is determined. Such models include the models of
Jelinsky and Moranda, Shick Woolverton, and Linwood-
Verrall.

Models with calculation of failures are based on the
number of errors detected at specified intervals of time. The
occurrence of failures as a function of time is a stochastic
process with a continuous intensity, and the number of failures
is a random value. The detected errors are usually eliminated
and therefore the number of errors per unit time is reduced.
This class of models includes Schumann, Schick-Woolverton,
Poisson model, and others.

Models with overseeding error are based on the number
of eliminated errors and overseeding made into an artificial
error program, the type and number of which are known in
advance. Then the ratio of the number of remaining predicted
errors to the number of artificial errors is determined, which is
compared with the ratio of the number of detected real errors to
the number of artificial errors detected. The result of the

136

comparison is used to assess the reliability and quality of the
program. When making changes to the program, repeated
testing and reliability assessment are carried out. This approach
to the organization of testing is cumbersome and is rarely used
due to the additional amount of work involved in the selection,
implementation, and removal of artificial errors.

Models with a choice of the input value range are based
on generating a plurality of test samples from the input
distribution, and reliability estimation are performed based on
the received failures based on the test samples from the input
area. This type of model includes the Nelson model and others.

1.12. ASSEMBLY, DOCUMENTATION AND
MAINTENANCE OF SOFTWARE
Software documentation

In the course of working on a project to create any
complex software system, a large number of project documents
are created. Its main purpose is to coordinate the joint actions
of a large number of developers for more or less long periods
of time - during the initial development of the system, in the
process of performing work on its modification, during the
escort. The structure of project documentation in most projects
is almost the same - these are the requirements for a system of
different levels (system, functional and structural), a
description of its architecture, program code, tests and
documents accompanying the implementation process
(installation guides, customization, user manuals).

Since the verification of the software system (in the
optimal case) is performed throughout the development life
cycle by a sufficiently large team of developers, test
documentation is created during testing. Its main purpose, in
addition to synchronizing the actions of testers at different
levels, is to ensure that testing is performed in accordance with
the selected criteria for assessing the quality and that all aspects

137

of the system's behavior are tested. Also, the test
documentation is used when making changes to the system to
verify that both the old and new functionality is working
correctly (Figure 1).

Before the verification manager begins testing, a
document is created, called a verification plan (or test plan, but
this is not the same as a test-plan). The test plan is an
organizational document that contains requirements for how
testing should be performed in this particular project. It defines
common approaches to the harmonization of development and
verification processes, defines verification methods, the
composition of the test documentation and its relationship with
the developer documentation, the timing of the various
verification stages, the various roles and qualifications of the
testers required to perform all testing work, the requirements
for testing tools and test stands, as well as assess risks and
provide ways to overcome them.

This document also defines requirements for the test
documentation itself - test requirements, test plans, test reports.

According to these requirements for the system and
functional requirements, test developers create test
requirements-documents that detail what aspects of the
system's behavior should be tested. Based on the description of
the architecture, low-level test requirements are created, which
describe aspects of the behavior of a particular software
implementation of the system that needs to be tested (fig.
1.12.1).

Based on test requirements, test designers create test
plans - documents that contain a detailed step-by-step
description of how test requirements should be tested.

138

functional architecture lovy-level

requirements requirements

____L ______ N‘_‘/____

test: low-level test-
requirement requirements

N

test. test:

envirenment examples

e

reports on coverage
the results reports
of the tests

______ B S S ——

problems
prenems requests for
reports -

|

Fig. 1.12.1. Documentation accompanying the verification process

change

Based on the test requirements and design
documentation of the developers, a test environment is also
created, which is necessary for correct execution of tests on test
stands - drivers, stubs, setup files, etc.

As a result of the tests, testers create test reports (they
can be created either automatically or manually) that contain
information about what inconsistencies in the requirements
were identified as a result of testing, as well as coverage
reports, containing information about what percentage of the
system's software code was involved as a result of testing.

By using nonconformities generate reports on problems
- documents that are sent for analysis to the development team
in order to determine the cause of the inconsistency.

139

Changes to the system are made only after a
comprehensive study of these reports and the localization of
problems that have caused a non-compliance with the
requirements. To ensure that the process of change does not get
out of hand and any change is recorded (and associated with
the tests that detected the problem), a request is made to change
the system. After all the work on the change request has been
completed, the testing process is repeated until an acceptable
level of software system quality is achieved.

The formats of various test documents are described in
the IEEE 1012 and IEEE 829.

All documents must have unique identifiers and be
stored in a single database of project documents. This will keep
the controllability of the testing process and maintain the
required quality of the system being developed.

Software maintenance

Software maintenance — is a set of actions to ensure the
operation of the software, as well as to make changes in the
event of errors in the process of operation, to adapt the
software to the new operating environment, as well as to
increase productivity or improve other characteristics of the
software. Maintenance (in accordance with 1SO / IEC 12207
and ISO / IEC 14764) is considered a modification of the
software product during operation provided that the integrity of
the product is maintained.

The "Software maintenance” knowledge area consists
of the following sections:

. Basic Concepts,

. Process Maintenance,

. Issue in Software Maintenance,
. Techniques for Maintenance.

Maintenance is considered from the point of view of
satisfying the requirements to the created software, the

140

correctness of its implementation, the learning processes and
the operational tracking of the support process.

The basic concepts describe the basic definitions and
terminology, approaches to the evolution and maintenance of
software, as well as to assess the cost of maintenance, etc..

The main concepts can be referred to the JV PO (ISO /
IEC 12207 standard) and documentation. The main purpose of
this area of knowledge is to implement a ready-made software
system, fix the errors that occur during the execution,
investigate the causes of errors, analyze the need to modify the
system in order to eliminate errors, estimate the cost of work to
carry out changes in functions and the system as a whole. The
problems associated with increasing the complexity of the
product with a large number of changes and methods for
overcoming it.

Software maintenance includes: models of the
maintenance process and planning of the activities of people
who are running the software, checking the correctness of its
implementation and making changes to it. The accompanying
process according to ISO / IEC 14764 is carried out by:

adjustments, i. product changes to eliminate detected
errors or unrealized tasks;

adaptation, i.e. product settings in changed operating
conditions or in a new environment for running this software;

Improvements, i. evolutionary changes in the product to
improve performance or maintenance level,

software checks to find and fix errors found during
system operation.

Key issues in software maintenance. The main of these
issues are

- managerial,

- measuring,

- cost.

141

The essence of management issues is the control of
software in the process of modification, improvement of
functions and avoidance of system performance degradation.
Measuring issues are related to the evaluation of the
characteristics of the system after its modification, as well as
re-testing and evaluation of quality indicators. Cost issues are
related to the evaluation of software maintenance costs,
depending on its type, staff qualifications, platform, etc.
Knowing these factors often allows you to reduce costs.

Software evolution. A well-known software expert J.
Lehman (1970) suggested that support should be considered as
an evolutionary development of software systems since the
system commissioned is not always complete; it needs to be
changed during the life of the system. As a result, the software
system becomes more complex and poorly managed; the
problem of reducing its complexity arises. Technologies for
software evolution include re-engineering, reverse engineering,
and refactoring.

Reengineering is the improvement of legacy software
through its reorganization or restructuring, as well as by
reprogramming individual elements or adjusting parameters to
another platform or execution environment while maintaining
the convenience of its maintenance.

Reverse engineering consists of restoring the
specification (call graphs, data streams, etc.) from the received
system code to monitor it at a higher level. Identification of
software components and connections between them is restored
to ensure reprogramming of the system to a new form.

Most often, reverse engineering is used after many
changes have been made to the software code and it has
become unmanageable.

Refactoring is the reorganization of code to improve the
characteristics and quality indicators of object-oriented and
component programs without changing their behavior. This

142

process is realized by gradually changing individual operations
on texts, interfaces, the programming and executing
environment, and setting up or making changes to the software
support tools. If the form of the existing system is preserved
when changing, then refactoring is one of the variants of
reverse engineering.

Software configuration management

Software Configuration Management (SCM) consists in
the identification of the system components, determination of
the functional and physical characteristics of the hardware and
software for controlling the introduction of changes and tracing
the configuration throughout the LC. This control corresponds
to one of the auxiliary processes of the LC (ISO / IEC 12207),
carried out by the technical and administrative management of
the project; reports on the changes made to the configuration
and the degree of their implementation are compiled, and the
compliance of the changes made with the specified
requirements.

System configuration - the composition of the functions,
software, and hardware of the system, possible combinations of
them, depending on the availability of equipment, system-wide
tools identified in the technical documentation of the system,
and product requirements.

The software configuration includes a set of functional
and technical characteristics of the software, specified in the
technical documentation and implemented in the finished
product. This is a combination of different elements of the
product together with the specified assembly and adjustment
procedures for the environment in accordance with the purpose
of the system. Examples of configuration items include the
development schedule, project documentation, source and
executable code, a component library, installation and
deployment instructions.

143

The knowledge area "Software Configuration
Management™ consists of the following sections:

. Management of SCM Process,

. Software Configuration Identification,

. Software Configuration Control,

. Software Configuration Status Accounting,

. Software Configuration Auditing,

. Software Release Management and Delivery.

Configuration management. This is an activity to
control the evolution and integrity of the product when
identifying, monitoring changes and providing reporting
information regarding the configuration.

Include:

systematic tracking of changes to individual
configuration components, performing an audit of changes and
automated control over making changes to the configuration of
the system or software;

support for the integrity of the configuration, its audit
and the provision of changes to configuration items;

a configuration audit to verify the availability of the
software or hardware developed and to reconcile the
configuration version with the specified requirements;

tracing changes to the configuration during the
maintenance and operation phases of the software.

Identification of software configuration consists in
documenting the functional and physical characteristics of
software configuration elements, as well as in the design of
technical documentation for software configuration items.

Software configuration monitoring consists of
coordinating, approving or discarding implemented changes in
configuration elements after formal identification, as well as in
analyzing incoming components in the configuration and
matching their identification.

144

Accounting of the status or software configuration
status is carried out with the help of a set of measures to
determine the degree of configuration change received from the
developer, as well as the correctness of the changes made to the
configuration of the software when it is accompanied.
Information and quantitative indicators are accumulated in the
relevant database and are used in configuration management,
reporting, quality assessment and other processes.

Configuration audit is an activity that is performed to
evaluate a product and processes for compliance with
standards, instructions, plans, and procedures. Audit
determines the degree to which the configuration element
meets the specified functional and physical (hardware)
characteristics of the system. Based on the functional and
physical audit of the configuration, the baseline of the
manufactured product.

Software version control is the tracking of an existing
version of the configuration item; assembly of components;
creating new versions of the system based on existing ones by
making changes to the configuration; the coordination of the
product version with the requirements and the changes made at
the LC stages; providing quick access to information about the
configuration elements and the system to which they relate.
Release management covers the identification, packaging and
transfer of product elements and documentation to the
customer. The following basic concepts are used.

Baseline - formally designated set of software elements,
fixed in the stages of the software center.

The software library is a controlled collection of
software, and documentation objects designed to facilitate the
development, use, and maintenance of software.

Software assembly — is the integration of the correct
software elements and configuration data into a single
executable program.

145

PART Il

I.1. PRACTICAL METHODS OF WORK IN

MICROSOFT PROJECT ENVIRONMENT
11.1.1. Creating and planning a project in Microsoft Project

Theoretical information

The Microsoft Office Project window consists of the
following elements:
the line of the menu;
toolbars;
input line;
representations panel,
working area;
status line.

The line of the menu, toolbars, and status bars are
standard for all Windows applications, and the way of working
with them is the same as in Microsoft Office.

The input line is intended for input and editing of data
into table cells (like the formula line in Excel).

The representations panel is used to switch between
the views of the window's working area. All data about the
project is stored in a single database consisting of a large
number of fields. A view is a way to display a portion of the
related data from a common project database. The system
implemented a large number of views - Gantt chart, network
graph, calendar, resource schedule, etc. If you want, you can
change the standard views by adding or removing the data
fields displayed on their tables. The first time you launch the
program, the representations panel may be absent. To display
it, select the View/Representations panel. Switch between
views by clicking on the icon of the desired view.

The workspace is intended for displaying images. It
can contain tables, charts, graphs, forms and used for both:
viewing and editing project data. To create a new project,

ouhkwdE

146

select File / New. A blank project with a blank database will be
created.

Features of Task Scheduling in the Microsoft
Project System
There are several types of project work:

1. ordinary work (hereinafter referred as the word work or
task);

2. milestone;

3. phase;

4. the total project task.

The work indicates some actions aimed at the
execution of some part of the project. The milestone is a zero-
length work. Milestones are designed to fix the control points
in the project plan, in which important event management
events take place. For example, the completion of one stage of
work and the beginning of another. Usually, milestones are
used to indicate the beginning and end of the project, as well as
to indicate the end of each phase.

The Phase is a composite work consisting of several
works and completing by a milestone. The phase describes a
certain logically completed stage of the project and may consist
of both: works and other phases.

The following rule is adopted in order to delimit work
and phases in the system. All works are divided into levels that
specify their hierarchy. Any work with subordinate work of the
lower level is a phase. All other works are not phases.

The overall task of the project is an artificially created
system of work, the duration of which is equal to the duration
of the whole project. This work is used to compute, display and
analyze aggregated project data.

CBsi3b MEXy 3a/ladaMy OIPEAeIsIeT, KaKuM 00pazoM
BpCMs Ha4aJla UJIM OKOHYAHUS O,Z[HOI71 3ala4u BJIUSACT HA BPCMs
OKOHYaHHUs WK Hayana apyroit. The connection between tasks

147

determines how the start or end time of one task affects the end
time or the start of another.
There are four types of connections in Microsoft Project:

1. end-to-start;

2. start-to-start;

3. end-to-end;

4. start-to-end.

An end-to-start connection is the most common case of
a link between works. With such a connection, work B can't
start earlier than the work A.

A start-to-start connection means that work B can't
begin until work A begins. With this connection, tasks that can
be run in parallel are combined. For example, training the
personnel to work with the program and entering data into the
program can take place simultaneously, but data entry can't
begin until staff training begins.

The end-to-end connection denotes the dependency at
which task B can't end until task A is completed. Usually, this
work combines work that is performed simultaneously, but one
can’t end before the other. For example, commissioning a
program and testing it and debugging can be done in parallel.
During the commissioning process, staff training, preparation,
and data entry take a place. However, commissioning can't be
completed until the testing and correction of errors found in the
program is completed.

A start-to-end connection denotes a relationship in
which work B can't end until work A begins. For example, A is
the commencement of a program in commercial operation, the
beginning of which is scheduled for a strictly defined date. B -
pilot operation of the program, which can't be completed until
the program is put into commercial operation. Moreover, an
increase in the duration of Problem A does not entail an
increase in the duration of Problem B.

148

The list of tasks begins with the separation of the
stages of the project. Each phase will correspond to a phase. If
necessary, especially for large projects, the stages
can be divided into smaller stages. In this case, the phase will
consist of smaller phases. When the list of stages is ready, a list
of tasks to be performed at each stage is drawn up. As the last
work of the stage, the problem of zero length, which
corresponds to the milestone, is used.

Entering a list of project tasks is performed in any of
the views that have a table for data entry. Best for this is the
Gantt Chart, which, in addition to the table, shows the project's
calendar schedule.

To enter a task, simply enter the name of the task in the
column Name of the task in the empty row of the table. By
default, the duration of a new task is taken equal to one day,
and the start date of the task is the start date of the project. A
question mark is displayed next to the duration value, which
indicates that this duration value is preliminary and is set by
the system. After the appointment of the duration of the user,
the question mark disappears.

Creation of connections between tasks is carried out
both: directly in the calendar schedule, and in the data entry
table.

On the calendar chart, you should point the mouse on
the task icon, click the left mouse button and, without releasing
it, move the pointer to the icon of another task, and then release
the mouse. A link will be established between them.

Binding tasks in the data entry table is performed using the
Predecessor column, which contains the numbers of the
immediately preceding tasks, separated by a semicolon.

The task duration can be assigned in two ways::

1. change the value in the Duration column of the data
entry table;

149

2. double-click on the task line to open the Task
Information window and on the General tab, set the duration
value..

By default, the duration is set in days. However, you
can change the unit of measure by specifying it next to the
numeric value. For example, 10d means 10 days, 10h - 10
hours, 10m - 10 minutes, 10month - 10 months.

Performance of work
1. Let's start drawing up a plan for our project to
add the first task, which will be a milestone, for this, we set the
task duration of 0 days. Such a task is by default a milestone.
You can also assign any task to a milestone through the details
menu in the Advanced tab.

" Thomysere 3a0aHmA 0 el BTILSL7 BriLmSTT o120

pei BILZBLT BTIZOSWT L]
pes? Br120917 Br1208.17
e 1pe? Br120807 Br1208.17

Fig 11.1.1. Stages of work

3. We will add the work that will be included in
these stages: using the insert key add new tasks after the
training phase, then we select all the added tasks and make
them subtasks of the preparation stage with the appropriate
button in the Task tab.

150

IAAL PECYPC OTUET MPOEKT BML Kowswas SOPMLT

& . - pebiy - — p—
L ¥ Bepenm o Tt -] T o rpopy # - - = n im
- B koompossm = 9 Cofimomme cran o o o ol P |
3 Ecrasms - & | o &% ranugosanis ASTGMATRUBEKDE (Toscpuy Mepeecturs Pt 3333
NI I R LT) = Camner menmmrn | 2niEos20n Y | Moces e Pooks | Suy

—_— Tagan

Bydep cbuena

%00 10000

Hazsanme rapam - O

< FlonyseHme J303HMA 0.aneh BT12.09.17 BT12.09.17 » 1209
- = Mogrorossa Lpews? By 120917 51120917 m
- OBpaBoria sasmHuA 1 aens? Br 12.09.17 B712.09.47 |
- VIOUMEIIE HIGIHEOB MmaTakE |1 newn? Bri209.17 87120917
- ONPATEMEHME TAKTHRM BHNOIHEHHA |1 oM BT 12,0917 87120917
- Pacnpesenenmue pabors 1 aewn? BT 120917 B712.0917
- BoinoaseHse 1aenn? Br12.09.17 Br12.09.17

Fig 11.1.2. Tasks and subtasks

4. We also add subtask to the stage of execution, in it we
will mark the milestone of the beginning of work, and after this
the milestone stage of the ordering

Hassamme sagaun ~ Bpwensn » | Hazno w Ovowsawi Mpsguecrsens v 4ncsen ¥ n nc

! - NonyueHme 3anaHHA 0avei BT12.09.17 Bri2.09.17
2 - 4 MogroToeka lgess? Br1209.47 Brizosi7

- Q6paboTka 3anaHA lgews? BT12.09.17 Br1208.17
4 = Yrounenve wosHcos y saasanka pews? BT1209.17 Briz0s.1?

- (ONPETENSHWE TAKTHIM S5INONHEHKE 1 Aeus? Br12.09.17 Br12.08.17

= Patnpenenesme paboTsl loews? BT12.09.17 Bri208.17

- 4 Bunonuenme lgess? Br1209.47 Brizosi7 m
8 - Hauano paGoTs 0gHed BT1209.17 BT1205.17 » 1209
? - Pa3paboTka nomkm 1nenn? Br12.09.17 Bri2.08.17 E
i - Paspaborka unTepdeiica 1gess? Br12.09.17 Bri2.09.17
n = Tectuposasine loews? BT12.09.17 Bri208.17
12 - COCT3RNEHKE MOKYMERTELIH lpews? BT12.09.17 Briz0s.17
E - (CAaya NpoexTa 3aMaT4HKY 0gHed BT1209.17 BT1205.17 » 1209

Fig 11.1.3. Stages, tasks and subtasks

5. Now we can associate completion of tasks with the
beginning of the following

Wl S MUR Ul U W s PUVMAI
- B X Buoes 00 by - s - p—
- . X Bapon - ee ™ Mo rpaguey y - w 3 im
B E P A ? S
A 3 Kowposars * Vb amn it A b
vpas Bcomnn X X bog. ® Lnarpasmnt ASIOMATINCKOR Mpotepury Mepewectims Peans 3nia
o + ¥ Gopuat no obpay 4 A Tew P CAMTI NSNS gocnns AMRDOMN B R . s
[By 95 chwrma Wendr J Masnpossme lazaun
= (SRR ——
[poo (100 ! " " i laee
Havaso [~ N -
sty | el g W
Pe i ™
0 + Hassamwe sapwen | Ao e W o yp N 0 pin s cun
- + NOAKOTORKA 1007 o
- YTOUHEHIE WOIHCOR Y Sicaiumcd 1 awn? Br12.09.17 Bri12.09.17

Fig. 11.1.4 Binding tasks
151

6. It is clear that in the preparation stage all subtasks go
one by one, so they can be highlighted and click on the same
button, and they will contact each other

pAIN SADAYA - PECYPC OTHET MPOEKT BWA Kowmanga DOPMAT
- -
R X Bopesans ol L mmes= B 1o rpaguy P 5 [F E’ tm
ER Konuposars ~ @) Cobniogars casmu v v
wrpaa Bz XKUY DA TF o @ _ Mnawwposhine Agrowaraeckos Mposepits Mepewecrims Pex 3agaua Cynavia
Tarma Gopuar no ofipasty = S Cperans measwenoi sy . - [
By Eypep obmena Wpngpr] Tnarnposarine 3agam
‘Cpﬂ.ﬁi ‘VYM‘C‘Q
Hauano -
[[loBassTe 334 C AaTaMM Ha BPEMEHHYIO Wkany
i
Pesan Hazea | 28 ke 17 04 Cen 17 11 Cent 17
[i] sapaus ~ | Hassanue sagaun v | Aunensic v Hasano | Okorsariti = Tpeautecteerti v | pecyp | B C 4 M C B/M B C 4N CEBNECYNCE
1 L MonyueHHe 3aaHnA 0 el Br12.09.17 BT12.09.17 4 12.09
- 4 MNogroroska Apked? Br12.09.17 Mr15.09.17
3 L3 OBpatioTia 3anaHuA 1 neHs? Bri12.09.17 Br12.09.17 1 '7
4 L) YTOUHEHHE HIOGHCOBY 3aKazuMka |1 aeHb? Cp13.09.17 Cpl13.09.17 3 vl
5 L3 OnpeTeNeHUe TaKTHKY BBINOAHEHHA |1 AeHb? Yr14.09.17 4r14.09.17 4 l
6 - Pacnpegenetne paGorel 1 4eHb? nri15.09.17 Nri15.09.17 5
- 4 Buino/Here 1pens? Br12.00.47 Br12.00.17 m
8 ® Usuannna AnTia N nuaii Rr170a17 Ar17Ma17 & 1200

7. Let's do the same with the execution of the work, but
there we can combine the development of logic and interface,
for this, with a double click, click on the development of the
interface, and in the tabs of predecessors, we will change the
type of the previous logic from "end-to-start” to “start-to-start”,
and in testing will add in the predecessors the development of
logic with the type of "end-start"

0 [T Paspatiorsa wirepgeca gmmﬁ.ﬂ B119.0917 9

Creaeninn o 3228 X
3 | Oume Mpeawects | Peorpea| | samemen| nons|
Haseamwe: | Paspaborea wwTepdesica Ourensmorre: | 1ems? = 7] Opeap. ouesa

Crpasxa Onuera
Fig. 11.1.6 Parallel tasks

152

Otune | ecmen| | Samern| o

1 nes [dpens. oue
|ERe—",
1%
o
copanea =

[- TecTuposakme laews? BT19.09.17 BT19.09.17 |10

Fig. 11.1.6a. Parallel tasks (continued)

8. After these operations planning will look like this:

(i I ssaHE S5 v Iumemsce Hevano - | Owoianwe | Tpsyuecsss y CumcCE cyncsnBCYNCBNBCYNC
= Monyuesn 3a03HmA Omed 7120817 Bride.n7 zn
= afogorosa Appei? BTIZAT M1SH8AT q—\
- Ofipafiomea sapanma 1pess? Bri20s.17 Br120.07 1 h
L] Vrowseine sogsconysanaea Lges? CpILOBNT CpLAOSAT 3 =
= Onperenede TaTnin BunonHesnn 1geds? MTIA0S.T 4140917 4 1)
- Pacnpagenekne padiorsi Lgews? MriSg8.7 Mrisdsar 5 -
= 4 BEINOAHEHNE 3gaei? MT15.097 Cp20.09.07 1
L] Havano pafioret Omseii MT1S057 MISI807 6 0'45-?
= PaspaboTea nonm Loews? MWISNS7 MW1S05.07 & a3
- PaspaboTea wiTepdeiita Lpews? MWIBOS.0T MHIR0SIT SHH Yy
- Ternposasie 1meds? BTI90S.17 BT1S.09.07 103 13
- CocTaBnexie fgxymeHTaum Lpews? CpIN0STT CpNST 1 i
= (42 Tp0eKTa 32K Ky Omel Cp20.09.07 CpALDBLT 12 G200

Fig. 11.1.7 The result of planning

9. We set the time for each task and include the total
project task in a tab format that will show the total cost of our
entire project.

O N)

[T Tewd ONN

Fig. 11.1.8. Determining the time of the tasks

153

10. Let's turn to Gantt charts with tracking, in which we can
see the critical path of our project.

] . . . s .
Tm et 2 st LA e BT "
L —— fh RUAL RURY aus
= fan L)
" n
= n
. tn
"
f 1R
T
L "
n
1 K
- tn
- i

Fig. 11.1.9. Gantt Chart with Tracking

11. Change the scale on the timeline, click on the calendar,
select "Zoom" and select "All project” in it.

7 CeHl1l, 17 CeH 18, '17 Cen 25,17 Okt 2,'17 OkT9,'17 Okt 18, 17 ¢

cln cine 84 Ty B Y C I
kana spemenu...
p “ = 0%
S 912 Q, Macwrab... ——
(| 3
; 1 0% B3 Vismenurs pabouce epemsi..
E lo% MokasaTs unw ckpsiTe CTiAM oTpeskos b
: ln%
lo%
o]
Ly 1 0%

ne v | UKoHuaHM v |IpEAWECTEEHH v | pecypcd| ¥ C M C M B B 4 C/ N C N B B 4 C N cnN B B Y4 ClI
12/17 nr10/20/1

12/17 o 9/12

1a/17 | Macumas == 1 0%

12/17 | Bubepure wacumas 10

w7 | © e

13/17 lo%

1a/17 WO%

14/17 T 1 0%
14/17 ﬁsm

14/17 e - [0%

14/17 . H

naf17| [omoc | [ok | [omena | o
19/17]or%
/20/17 nv10/20/17 12 + 1072

Fig. 11.1.10. Calendar on Gantt chart with tracking

154

12. Add the executors (employees) the necessary resources
(material) and expenses (finance), we will go to the tab
resources:

Fig. 11.1.11. Add resources to the project

We can choose one of the three types of resources for each

item:

- Labor - executors (people who work and receive salary);
- Material - resources required to perform work (materials,

etc.);

- Costs - cash expenses.

1

[QT
DPOHT-3HA
B3K-3HA
[n3ainep
PyroBOauTEND
TecTmpoBLAK
Gymara
Kode

v Tun
Tpyaoeoit
TpyAosoi
Tpyaosoi
Tpyaosoi
Tpyaosoit

MaTepuansHt Auct
MaTepnansH: yalka

mmepenns Kpacoe
v warepHanG v | rassarin | [pynna v

°

3

4

P

=

6

K

Maxc.
eamtn v

100%
100%
100%.
100%.
100%.

Cangapria | Craeia
caga v cocppod v Wenon v | Hadwncnenne v Kanenaaps

200.008/4
400,008y
200.008/u
500.008fu
150.008/u
0.102
10.008

0.008/4
0.008/y
0.008/u
0.008fu
0.008fu

Ha

Bazogsiii

0.002 NponopunoHant CTaHaapTHbIiA
0.00 2 MponopumoHant CTaHZapTHbIi
0.002 MponopuyuoHant CTaHABPTHbIA
0.002 MponopuuoHant CTaHAPTHbIA
0.002 NponopumoHant CTaHRapTHbIi
0.002 MponopuuoHant

0.002 MponopumoHant

- K

Fig. 11.1.12. Project resources

155

We also specified units of measurement for mat.resources,
their cost and salary of employees.

13. Next, we distribute resources by assignments. Returning
to the Gantt chart, select the Resource tab, then Assign
Resources.

omesh TI00/7 TI0ANNT 12

Fig. 11.1.13. Distribution of resources by assignments

In milestones, we appoint only (') workers who start work.
ni;:::sw B /1217 T 10/20/T

7% BSAENE IS HE KBS PECTDCDS YaepIBaITE asgiauy CTRL

Fig. 11.1.14. Distribution of resources for tasks and subtasks

156

—

| 3agaqa: ¥ToOUHEHNE HIDAHCOE ¥ 3aKas4nKa
- | MapameTpul CMWCKa pecypos

| Pecypew w3 npoekTa MNpoekr!’

Hazsanne ca 3/m EanHuL| 3aTpaTel |"
v [kode 14aweka : 10,002
v |PyroBoguTens 100% 1500002 LAannTe
Bymara
Iy 3aMeHTE.
Bak-3Ha
| AusaiiHep Ipadk
| TecTUpOBLME
DPOHT-3H], 3akpuiTe
Cnpaeka
v

[nA BEZENEHMA HECKONBKHX PECYPCOE VAEPXUEANTE Knasmwy CTRL

——

| 3apaua: ONpeTeneHue TAKTUKM BEINONHEHUA

= | MapameTpei cincka pecypcos

Pecypenl v3 npoexTa Mpoekr!”

HaseaHue pegypca

3n EAVHWLL| 3aTpaTel | ~
v | B3k-3Hg 100% 3200002
v [kooe 20 yawk: 200,00 & LLEILE
v |PyroEDANTENE 1008 4000,002
i 4 - 2 3aMEHNTE. .,
v |DpOHT-3HA 1009 1600,002
| IGyMara [paduk
| [usaiiHep
TecTUPOBWMEK 3aKpeiTs
Lnpaeka
w
A EBZENEHNA HECKONEKWY P eCyp COE YAep#MEanTE Knaenwy CTRL
|
| 3apauqa: Pacnpegenerine paboTel
~ | MapameTpel cNUcka pecypros
| Pecypewl w3 npoexta Mpoekr!’
HaseaHue cad 3n EauHunyl| 3atpatel ~
v |kode 1 yaweka ;10,002
v |Pykosogurens 100% 500,002 YaanuTe
6;
I L= 33aMEHUTE..,
B3k-3Hg
Auzaiinep [paduk
TecTUpOBLWME
DpaHT-3H 3aKpeiTh
LCnpaska
v

JNA BEIAENEHNA HECKONEKWX DECYP COB YAEpXUEaNTE Knasuwy CTRL

Fig. 11.1.14a. Distribution of resources for tasks and subtasks

(continued)
157

11.1.2. Risk management in Microsoft Project
Performance of work

Part 1: Introduction and identification of risks

1. Open the outline of your project and go to the Gantt

Chart view.
BB, E domeeme l A3BERR e EaZ RN
m’-
=

Fig. 11.1.15. Gantt Chart view

2. Next, we need to create a table for analysis and risk
management. Right-click on the intersection of the row and
column header and select More Tables from the shortcut
menu.

Fig. 11.1.16. Gantt Chart. More Tables
158

3. We will not use the template, create a new table,

click the New button.

More Tables X
Tables: @Tgsk Oﬁesour(e
Delay ~ Mew...
Earned Value
Earned Value Cost Indicators Edit.
Earned Value Schedule Indicators i

q

i Lopy...

| Organizer...

i

3 w

i

? Apply Cancel

.

Fig. 11.1.17. Creation a new table

4. Name the Risk Analysis table and add the following
fields: ID. (task sequence number), Name (to understand which

task the risks are), and the Textl

field (to

identify

opportunities) and the Text2 field (for threat identification). Do
not forget to include the Show in menu option to make it

easier to navigate to this table.

EH S 5 GANTT CHARTTOOLS

G 7ASk RESOURCE REPORT PROJECT VIEW TEAM FORMAT

X il T mmmess B Mark on Track + 5 3 Inspect *
- D a 0 25 S0 75 1002 ® b, !

G b By DA 5 6 o Repectlins ety At | o

s u CA- T he @ by

Chatr |+ ¥ = Inactivate Schedul Schedule =2 Mode~
View Clipboard Tasks

Tables: @ Task (O Resource

Esrenuii Konechiuenko

I b

Task Inform

ation . Seroll
-
@ Tk M

Insert Properties Editing

ANALYSIS OF RISKS et
Baseline
Constraint Dates e 1000 T cat 9700 - P
Cost ue 19.09 hu21.09 Sat23.09 Mon 25.09 Wed 27.09
HasBarwe sagi |Delay late Finish v F|~ B - - - = = - - -
Earned Value Lopye 4
4 0.
1 AP e value Coctndictors fion 04010 00
2 Recsiing| |Earned Value Schedule Indicators Organizer... | | Wed 200847, —
3 | 4 Preparati |ENY Fri 220047
Export
4 Proces |Hyperlink
5 Clrty Table Definition in TlpoekT Ynpasnerve prckammi’ X
L] Determ
Hame: ANALYSIS OF RISKS Show in menu
7 Distriot
8 7 fri2 Table
9 Beginning of work FriZf Cut Row Copy Row Paste Row Insert Row Delete Row ‘
10 ogi Fri
Freld Name Align Data\wmm Title |AhgnT\tlelHeadErWrappmg Text Wrapping A
1 Paspaborka krepd Fri
D Left 5 iCenter i¥es No
“ Testng m | ;Name Left 40 iCenter iYes Yes

Fig. 11.1.18. Risk Analysis table

159

5. Click OK and click Apply again to go directly to our
created table. Adjust the width of the columns so that you can
work with it. In this table you can already perform the
identification of Opportunities and Threats.

NG GANTT

Fig. 11.1.19. Risk Analysis table

6. In order not to introduce new opportunities and
threats each time, these two fields will be supplemented with
certain parameters that will allow us to re-use the already
identified opportunities and risks. To do this, move the mouse
cursor over the header of the Features column, right-click and
select Custom Fields in the context menu.

o

@ d :
e roRce RerorT

ESk
w

Gantt Paste
cha= - ¥

PROJECT AT
ROSECTUAI _ o
tomer | PROJECT Maj ' 2712 Typ " o o

Fig. 11.1.20. Custom Fields
160

7. Before you open the Custom Fields dialog box.
Rename the Textl field to CAPPABILITIES, and the Text2
field in THREATS. Then, for the CAPABILITY field, enable the

Fig. 11.1.21. Threats Fields

8. Then, in succession, click the Lookup button for the
CAPABILITY field and for the THREATS field. In the dialog
that appears, expand Display order for the lookup table and
switch to Ascending. That is, all the input values will
automatically be sorted in ascending order.

9. Then expand the Input Options and enable the
option to allow the addition of additional elements to the fields.
That is, all the opportunities or threats that we enter into these
fields will be automatically added to the list, sorted in
ascending order and will be available for reuse.

161

10. Close the Custom Fields dialog box and return to
the project. Now we can identify the opportunities and threats
that will be automatically added to the list. For example, for
task processing task, we identify the possibility - Having a job
processing plan will shorten preparation time. And for the task
of Developing a project interface as a threat identify the lack
of a specialist with the proper qualifications can lead to

incorrect evaluation of the project.

— X

Fig. fl.1.23. Identification of the opportunities

Part 2: Classification of risks
1. In our practical work, I will use the standard risk
structure. So, move the cursor to the intersection of the row and
column header and select More tables from the context menu.
2. Add the Code field of the directoryl. (Structure code
1 in older versions of Office) and click Ok to apply and add a
new column.

Fig. 11.1.24. Identification of the opportunities
162

3. On the heading of the Outline field1 box, right-click and
select Custom Fields. In the dialog that opens, first of all,
rename the Outline Encoding fieldl to the SDRISK (structural
risk decomposition). And then click the Lookup button.

Custom Fields X

Field

(®) Task. (O Resource Project Tpe: Outline Code ~

Field [~
SDRISK (Outline Codel)

STRATEGY FOR THE RESPONSE (Qutline Code2)
Qutline Code3
Qutline Coded
Outline Codes
Outline Codef
Outline CodeT

outl v

Rename... Delete Add Field to Enterprise... | | Import Field...
Custom attributes

None @ Lookup... Formula...
Calculation for task and group summary rows

Mone () Rollup! Use formula
Calculation for assignment rows

None () Roll down unless manually enterad
Values to display

Dsta Graphical Indicators...

Help Cancel

Fig. 11.1.25. Custom Fields

4. In the Lookup dialog, first open the + (plus) icon for
the Code Mask value and click the Edit Mask button. This is
necessary to add another layer of the structure

Fig. 11.1.26. Edit Mask
163

5. Close this dialog box and enter our structural
decomposition of the risks. Do not forget to use the structure

buttons, in this dialog they are called, respectively, the Lead
and Indent.

B Japan toskig B

‘Fig. 11.1.27. Lead and Indent

6. You can close this dialog box and the Custom Fields
dialog box. Now we are ready to classify all of our identified
risks (OPPORTUNITIES and THREATS).

R s
B ~
Paste
Clipboard Font Schedule
Name - SDRISK -~ cal

1 4 Project
2 Receiving an assignment
4 Preparation
Processing a job ORGANIZATIONAL RESOURCES Plan Availabil
Clarifying the nuances of the head EXTERNAL CUSTOMER

Determining the implementation tactics | PROJECT MANAGEMENT.PLANNING | Using corpor:
Distribution of work RGANIZATIONAL PRIORTY SETTING Presence of r
s 4 Performance
Beginning of work RGANIZATIONAL PRIORTY SETTING
10 Development of logic PROJECT MANAGEMENT PLANNING
1 PaspatoTra unTepdeiica TECHNICAL. QUALITY | Presence of ¢
12 Testing PROJECT MANAGEMENT. CONTROL | Instructions
13 Drafting of documents PROJECT MANAGEMENT.CONTROL
14 | Delivery of the project to the customer IPRDJECT MANAGEMENT.CONTREC[w ||

= TECHNICAL
- REQUIREMENTS
TECHNOLOGY
COMPLEXITY AND INTERACTION
- PERFORMANCE AND RELIABILITY
H QuAaLITY
5 EXTERMAL
SUPPLIERS
- MARKET
CUSTOMER
- WEATHER
=1 ORGANIZATIOMAL
- DEPENDEMNCE OF THE PROJECT

Fig. 11.1.28. Opportunities and Threats
164

7. In my example, two risks were

identified.

Opportunity - Having a plan ... and a threat Lack of a specialist
... Both risks are related to organizational risks associated with

resources.

8. Further in this table we need to add one more column
for the RISK OWNER. To do this, move the cursor to the
intersection of the row and table header, right-click and select

Other tables.

Fig. 11.1.29. Other tables

9. In the dialog box, select the RISK ANALYSIS table
and click the Change button. Next, in the dialog box that
opens, immediately after the THREATS line, add the Text3

field and define the title RISK OWNER.

Table Definition in 'Mpoext Ynpaenenue puckanu’

Name: | ANALYSIS OF RISKS
Table

|

[~ show in menu

| Cut Row Copy Row Paste Ro; Insert Row | | Delete Row

‘ Field Mame Align Data| Width Title
EFFECTS (THREATS) Right 17

I RISK OWNER Right 2 I
STRATEGY FOR THE RESPONSE Right 0;
EVENTS Right 0

A Lock first calumn
[Auto-adjust header row heights
[Z] show 'Add New Column’ interface

7
S S O O - Y Y

Help

Text Wrapping ~
o

2 e s
55538

Fig. 11.1.30. Risk owner

165

I

10. Click OK and immediately apply this table. In this
field you can manually enter the risk owners, but we will make
a reference with universal roles.

11. In order to make a directory with a list of risk
owners, simply move the mouse cursor over the column header
of the RISK OWNER and select the Custom Fields command.
In the opened window, replace the name of this field with the
RISK OWNER and click the Lookup button and enter the
following values: Corporate management, Organization
management, Senior user, Senior supplier, Project manager,
Internal project control and Project support.

Edit Lookup Table for RISK OWHNER bl

_| Lookup table

F<

Ba| B (3= |3

]
8
=

Value Description ~
Corporate Governance
Management of the organizatic

|

senior user
Senior supplier
Project Manager
Internal control of the project Move
Project support

‘ ‘ | | ‘ ‘“|m‘m‘b|w|

isplay indenting in lookup table

a

se avalue from the table as the default entry for the field
Set Default | (Click button after selecting a value above)

_| Display order for lookup table

(® By row number () Sort ascending () Sort descending St

_ | Data entry options

[Allow additional items to be entered into the fields. (Values will be added to lookup)

Allow gnly codes that have no subordinate values
Help Import Lookup Table...
Fig. 11.1.31. Custom Fields

12. After that, you can close this window and click OK twice
to return to the view. For the task of processing the project task
by the risk owner, I will assign the Project Support, and for the
task Developing an Interface .. Management of the
organization.

166

Part 3: Qualitative Risk Analysis

1. Use the Risk Analysis table. Then move the cursor to
the header of any column, right-click and select the Custom
Fields command in the context menu. Select the type of the
Number field. And then sequentially rename the fields:
Numberl - PROBABILITY (POSSIBILITIES), Number 2 -
INFLUENCE (POSSIBILITIES), Number3 - IMPORTANCE
(CAPABILITIES), Number4 - PROBABILITY (THREATS),
Number5 - EFFECTS (THREATS) and Number6
IMPORTANCE (THREATYS).

Fig. 11.1.32. Rename Custom Fields

2. Now select the PROBABILITY (OPPORTUNITY)
box, click the Lookup button and enter the following values: 1
- VERY LOW; 2 - LOW; 3 - AVERAGE; 4 - HIGH and 5 -
VERY HIGH.

167

3. Do
field.

Edit Lookup Table for PROBABILITY (OPPORTUNITIES) >
~| Lookup table
& @& S [3x
Row| value ription ~
[VERY LOW
2 2 Low
ElE} MIDDLE
a | HIGH
5 s VERY HIGH -
Move
[-
Display indenting in lookup table
[Juse a value from the table as the default entry for the field
Set Default | (Click button after selecting a value above)
_| Display order for Iookup table
@ By row number (O Sort ascending () Sort descending sort
_| Data entry options
[C] Allow additional items to be entered into the fields. (Values will be added to lookup)
Allow only codes that have no subordinate values
Help Import Lookup Table...

Fig. 11.1.33. Probability (Opportunity) box

the same for the EFFECT (OPPORTUNITY)

4. Go to the IMPORTANCE

the formula [PROBABILITY (OPPO
(OPPORTUNITY)].

ANNING Ugit Field

(OPPORTUNITIES) box
and click the Formula button. In the window that opens, enter
RTUNITY)] * [EFFECT

SETTING Prel (@) Task (O Resource Project Tpe:

E) | Field ‘ Q
SETTING PROBABILITY (OPPORTUNITIES) (Number1)

ANNING EEEECT (ODRNDTLIMITIES (b1 imar?)

WALITY | Formula for 'IMPORTANCE (OPPORTUNITIES)' X
NTROL|

nTroL | Edit formuta

wTRoL| 'MPORTANCE [OPPORTUNITIES) =

L] |&fmop| v (A] Lely] |=

Insert: Field Function +

Help

[PROBABILITY tOPPORTUNITIES]] * [EFFECT (OPPORTUNITY)].

AND | OR ||NOT

< <>

Import Formula...

[yNOnE () RO O0W UNIESs manuany enterea

! Valnes ta dicnlaw

Fig. 11.1.34. Importance (O

168

pportunity) box

5. Now, for the IMPORTANCE (OPPORTUNITIES)
field, configure the graphic indicators. To do this, click the
Graphic Indicators button and define it as follows:

Graphical Indicators for "IMPORTANCE (OPPORTUNITIES)" X
Summal ws
O Project summary
Project summary inherits criteria from summary rows
Cut Row Copy Row Paste Row Insert Row Delete Row
Test for IMPORTANCE (OPPORTUNITIES] Value(s) Image A
is I35 than ar equal to «|2.00
5,0012,00 Move

is within
15,00 + -

is greater than or equal to

To display graphical indicators in place of actual data values, specify the value range for each indicator and the
image to display. Tes pplied in the order listed and processing stops at the first successful test,

[] show data values in ToolTips

Import Indicator Criteria... cancel
Fig. 11.1.35. Graphic indicators

Help

6. Note that if you choose to check the field from the
drop-down list, then the checks "within™ are not, nevertheless,
we use this check, since it works, as opposed to checking

"inside".

Graphical Indicators for "IMPORTANCE (OPPORTUNITIES)" ®
Indicator criteria for
(® Nonsummary rows
Cut Row CopyRow | | PasteRow | | InsertRow | | Delete Row
[Test for IMPORTANCE (OPPORTUNITIES) Value(s) Image
i les5 than or equal to 4,00
< |[s.00:12,00 Move
15,00 + -
v

ch indicator and the
cessful test,

ot values, specify the value range for ea
ed and processing stops at the first suc

is less than
is less than or equal to

Tmper et Ctren =

i not within
contains

Fig. 11.1.36. Graphic indicators (continued)

7. Now, in order not to enter values for fields

PROBABILITY (THREATS), EFFECT (THREATYS), I simply
copy them from the corresponding fields of possibilities. To do

169

this, highlight the PROBABILITY (THREATYS) field and click
the Import Field button. Then select the appropriate field.
Repeat for the EFFECT (THREATS) field.

it Feld
{ @Task Resource Project Type Number v
] i

[Fiea [~
|| PROBABILITY (OPPORTUNITIES) (Number)
EFFECT (OPPORTUNITIES) (Number2)

IMPORTANCE (OPPORTUNITIES) (Number3)
PROBABILITY (THREATS) (Numberd)

h.
OResource () Project
EFFECT (OPPORTUNITIES) (Number2) v

conc

Calculation for assignment rows

| @HNone () Roll down unless manually entered

Values to display

@Data O | Graphical Indicators...
Help cancel
Fig. 11.1.37. Effect (Threats) field

8. Now select the IMPORTANCE (THREATS) field
and enter the formula [PROBABILITY (THREATS)] *
[EFFECT (THREATS)].

| EEEE/ T (OBROBTLMITIESL (kliumbardl

Fermula for 'IMPORTANCE (OPPORTUNITIES) *

Edit formula
IMPORTANCE (OPPORTUNITIES) =
[PROBABILITY (THREATS)] * [EFFECT (THREATS)].

s -] [a|mon|y A][y |=] <>|<|>]| |[anD| OR ||NOT

Insert: Field « Function + Import Formula...

Fig. 11.1.38. Formula

170

9. Next, configure the graphic indicators for this field.

We also use import conditions from the field IMPORTANCE
(OPPORTUNITIES). ‘_

~ | (OPPORTUNITIES) ~
o of
0 of *
o of

4 ORGANZATIONAL RESOURCES Plaf

EXTERNAL CU STOMER|

6 | PROJECT MANAGEMENT PLANNING!

7 |RGANZATIONAL PRIORITY SETTING: () Resource Wre | Humber 1

8 |RGANZATIONALPRIC

10 PROJECT MANAGEN| "

Fieldtype: @ Task O Besource O Praject

cancel

o
[DAt @ | Graphical Indicatars:

Help cancel (‘

[
Fig. 11.1.39. Use import conditions

10. But if they are threats, then the graphical indicators
will be a minus sign

Graphical Indicatars for “IMPORTANCE (THREATS)" *
Indicator criteria for
® Honsummary rows
(O summary rows
Summary rows inherit criteria from nonsummary rows
(O Project summary
Project summary inherits criteria from summary rows
Cut Row CopyRow | | PasteRow | InsertRow | | Delete Row
Test for IMPORTANCE (THREATS] Value(s) Image ~
is less than or equal to 4,00 -
is within 5,00;,12,00 Move
is greater than or equal to 15,00 = -
v
To display graphical indicators in place of actual data values, specify the value range for each indicator and the
image to display. Tests are applied in the order listed and processing stops at the first successful test,
[] Show data values in ToalTips
Help Impert Indicator Criteria... Cancel

Fig. 11.1.40. Minus as a graphical indicators

11. We have to adjust the table, and we will be ready to
perform a qualitative risk assessment. Close the Custom Fields
dialog box. Then move the mouse cursor to the upper right
corner of the table, right-click and select More tables in the
context menu.

171

12. In the window that opens, select RISK ANALYSIS
and click the Change button.

13. In the Definition of Table ... dialog box, highlight
the THREATS line and click. Add a row ... and add the
PROBABILITY (OPPORTUNITY), EFFECT
(OPPORTUNITIES), and IMPORTANCE
(OPPORTUNITIES) fields sequentially.

Table Definition in Tipoekr Ynpasnenie puckamm X
Name: | ANALYSIS OF RISKS [show in menu
Table
‘ Cut Row CopyRow | | Baste flo Insert Row | | Delete Raw
Field Name ‘Allgn Data‘wmtn Title Align Title | Header Wrapping | Text Wrapping _ #

PROBABILITY (OPPORTUNITIES) Right 19 Center iYes Yes
EFFECT (OPPORTUNITIES) Right 12 Center Ve Yes
IMPORTANCE (OPPORTUNITIES) Right 23 Center iYes Yes
THREATS Left 30:RISK OWNER Center Ves Ves
PROBABILITY [THREATS] Right 16: Probability (THREATS : Center Ves Ves
EFFECTS (THREATS) Right 17 Center iYes Ves
IMPORTANCE (THREATS) Right 16 Center [Yes Ves Y
Date format: | Defautt v Row height: | 1

ck first column

to-adjust header row heights
[Show *Add Hew Column’ interface

Fig. 11.1.41. Probability (Opportunity), Effect (Opportunities),
and Importance (Opportunities)

14. Now select the row RISK OWNER and add the
PROBABILITY (THREATS), EFFECT (THREATS) and
IMPORTANCE (THREATS) fields.

Mame: | ANALYSIS OF RISKS Show in menu
Table

‘ Cut Row Copy Row Paste Ro Insert Row | | Delete Row

| Field Name Align Data‘W\dthI Title Align Title | Header Wrapping | Text Wrapping *
{PROBABILITY (OPPORTUNITIES) Right 19} Center Yes Yes

{EFFECT (OPPORTUNITIES) Right 12! Center Yes Yes

;IMPORTANCE [OPPORTUNITIES) Right 23 Center Yes Yes

I Left 30iRISK OWNER Center iYes Yes

PROBABILITY [THREATS) ||dight 16! Probability (THREATS, Center [Yes Yes

H f ight 1?; Center Yes Yes

EIMPORTANCE (THREATS) Right 16 Center es Yes v

Date format: | Default ~ Row height: | 1

[Lock first eolumn
[Auto-adjust header row heights
[show 'Add New Column’ interface

Help Cancel
Fig. 11.1.42. Probability (Threats), Effect (Threats) and
Importance (Threats)

172

15. Click OK to close this dialog and apply the table.
We are ready to carry out a qualitative risk analysis of our
project. Note that we have not done a risk analysis, however,
the plus sign or minus sign is already displayed in the
IMPORTANCE column for opportunities and threats. The fact
is that when we determined the conditions for the graphic
indicators, we indicated "less than or equal to 4".

16. Do an assessment of the likelihood and impact for
those opportunities and threats that we identified with you.
Probability we will evaluate as "average", but in real life you
must clearly understand the context of your company, so the
probability estimate will be more accurate. Influence for the
possibility we will point out as "high"”, and for the threat of
"very high".

TASK | RESOURCE ~ REPORT PROJKECT VIEW TEAM FORMAT Esrennii Konecnnuenko
‘D ; Tahom. -Je 7 hm = #h
Gantt Paste B BIU d-A Task * Information 2 Editing
Chart- - ¥ G- -
View | Clipboard Font Schedul Tasks Insert Froperti
BABL FFEC ORTA sbabi FEC IMPORT
Name - SORSK v CAPABILITEES ~ DRTUN v RTUM v [RTUPv| RISKOWNER v |REA = REAw (THREA
1 | o 0 0 0
2 Ceil 0 0 0 o
o] [o o
Pros job "ATIONAL.RESOURCES Plan Availabiity 2 4| 0 o
Clar e nuances of |EXTERNAL CUSTOMER 0 0 Delayed deadlines 2 4
thi
6 PROJECT Using corporate spirit 4 4 o Invaid priorty evaluation) s
L s NAGEMENT. PLANNING
7 ist WAL PRIORITY SETTING Presence of motivator 3 3 Incorrect distribution of ta 2 4
8 4 Perfor 0 0 0 0
s Be JALPRIORIY SETTING 0 0 Delayed deadines 1| 2
10 De NAGEMENT PLANNING 0 0 Lack of specialist 3 5
1 Pas ca TECHNICAL QUALITY Presence of a template: 3 4 Bugs 1 1
12 Tes ANAGEMENT.CONTROL Instructions. 3 4 o o
13 Dr of documents. ANAGEMENT.CONTROL 0 0 Shortcomings 2 2
14 Del oject to PROJECT 0 0 Delayed deadlines 1 2
the custom ANAGEMENT .CONTROL

<ING GANTT

Fig. 11.1.43. Evaluation of Probability and Importance
17. In conclusion of the qualitative risk analysis, you

can identify the root causes of the risks and perform the
ranking of risks by priorities.

173

®HS- Mipockr Ynpsanenne puckammmpp - Preject Professk

ANTT CHART T00L5
TASK | RESOURCE REPORT PROJECT VIEW TEAM FORMAT Eerennii Kanecrme
m:‘ T‘\ X, vial Ts C| - ™ Mark on Track ~ > q = - i m
ot Poste B » B Respect Links Manually | Aute - sk ¥ | information
Chart o _ R roA- € W, ¥ Inactivate Schedule Sehedule: ’_’ N - 5
v iph sks Inser Propert
BABL FFEC ATA sbabi FE PORTANCE
soREK - CAPABILTES ~ ORTUN « |RTUN = RTUN | RISKOWNER _ |REA ~ REA w (THREATS) + AddNew
DR < 0 o
o o * D) -
o o 0 e
4 ATIONALRESOURCES Pian Avaiabity 2 4 0 o -
5 EXTERNALCUSTOMER 0 0+ Delaved deadines E]
PROJECT Using corporale sprt f B 3 s
NAGEHENT PLANNNG
AL PRIORITY SETTNG 3 3 2 4
8 o o 0
AL PRIORITY SETTING o o 2 -
10| NAGEMENT PLANNNG o 0 s -
|| TECHNICAL QUALTY Presence of a tempite 3 4 1 -
12 WAGEMENT CONTROL nstructions I o =
3 \WAGEMENT.CONTROL 0 o 2 -
o o 2 -

14 PROJECT
ANAGEMENT, CONTROL

ING GANTT

Fig. 11.1.44. Ranking of risks by priorities

Part 4: Planning responses to risks
1. Open the More Tables dialog box.

& = -
TASK RESOURCE REPORT

WD | By 2 (e s
Gantt Paste Fi

CThart = - 4 __I © «
vpmoars | sane

igiig. 11.1.45. More Tables

2. In the Other Tables dialog box that appears, click
Edit.

3. In the Define a table in the project ... dialog box, go
to the very last line and add two fields: Directory2 encoding

and Text4. These fields are still free and we can add the
necessary information to it.

174

Fig. 11.1.46. Add the necessary information

4. Click OK to close this dialog box and click. Apply to
return to this table. You see that we have two additional fields
that do not yet contain any information. In addition, the field
headers are impersonal in nature - Directory encoding2 and
Text4. To configure these fields, right-click the heading for the
Directory Encoding field2 and select the Custom Fields
command.

nnnnnnnnnnnn

B
Ee Copy
in
=2

AB@» > 638 |

Fig. 11.1.47. Custom Fields

5. In the Custom Fields window that opens, select the
Directory Encoding field2 and click Rename. Enter the name
of the STRATEGY OF THE RESPONCE. Then click the
Substitution button and in the window that opens, enter the
following data. When entering data, do not forget to add a

175

second level in the Code Mask. After entering the data, click
Close.

Edit Lookup Table for STRATEGY FOR THE RESPONSE x
_| Code mask (optional)
You can edit the mask for the lookup

table, induding adding or deleting
levels.

Edit Mask...

Code preview:

_ | Lookup table

b | [Ba| @) |3 3x +| = ™

Row| Value Description ~
1 |4 cAPABILITIES
USING

INCREASE
SEPARATION
ADOPTION

4 THREATS

EVASION
BROADCAST
REDUCTION
ADOPTION

Move

‘W|W‘\4‘W““‘|b|w‘r\‘

Display indenting in lookup table
[JUse a value from the table as the default entry for the field

Set Default (Click button after selecting value above)

_ | Display order for lookup table

@ By row number O Sort aseending () Sort descending Sort

_ | Data entry options

Fig. 11.1.48. Strategy of the Responce

6. In the Custom Fields dialog box, go to the Text
field, and then click Rename and type the name of the activity.
In this field, we will keep a brief description of the risk
management activities.

Field
Task Resource Project Type: Text v
Ve
[Fieta [~

CAPABILITIES (Text]
THREATS (Text2)
RISK OWNER (Text3)
[EvenTs mexta)
Texts

Texts

Text? Rename Field x

New name for ‘EVENTS': Import Field.

EVENTS

v

Custom attribute]

@ None O Cancel

Calculation for task and group summary rows

@®none Rallup Use formula

Calculation for assignment rows
@ None () Roll down unless manually entered

Values to display

@®pata O | Graphical Indicators...

Help oK Cancel

Fig. 11.1.49. Name of the Activity
176

7. Click OK two times to complete the risk analysis. In
our table, choose a strategy for responding to risks
(opportunities and threats) and make a brief description of the
measures to manage these risks

Schedule Tasks Insert Prog

uuuuuuuuuuuuuuuuuu

STRATEGY FOR THE

RESPONSE - EVENTS - Outline Co
CAPABILITES USING Make a plan
THREATS.REDUCTION Keeping additional. Time:
CAPABILITIES ADOPTION Use of the approved plan
CAPABILITES INCREASE Use of proven employees
THREATS.REDUCTION Keeping additional. Time:
THREATS.EVASION Adtraction of a specialist
THREATS BROADCAST! Aftraction of a specialist
CAPABILITIES.SEPARATION Development instructions,
THREATS ADOFTION Control the completion of the project
THREATS ADOPTION Keeping additional. Time

Fig. 11.1.50. Brief description of the measures

11.1.3. Visual reports in MS Project
Performance of work

Reports in MS Project are for creating reports in the
form of graphs, charts, tables, etc. in the Project within the
familiar Office infrastructure of your project data to analyze
your project and then share the results with others. There are
many ready-made reports, but you can also edit and customize
them.

1. Let's create the first report, for this we will use the
standard template. Select the tab reports, dashboards,
BURNDOWN.

177

B 9 x Gantt Chart X JusyansHeie OTueTs: - Project npodeccnonansHeii

File

ESREITTY & T SRE RN TR T
Compare New Dashboards Resources Costs In Progress Getting Custom Recent
Projects Report~ | v v, * Sotedr v v
Project By

Hasarme

1 [Project
2 Rect
assi

ey
Pl 3
Carfypg e ®
nuances of the
head
Determinng he =
mpenentabon
tackes

Fig. 11.1.51. Reports, Dashboards, Burndown

2. Burndown shows which part of the work is
completed and how much is left. If the line of the remaining
total labor is steeper, it is possible that the project will not be
completed on time. That is, the orange line shows how it
should be in an idyllic scenario, but as we see on the blue line,
which shows the current state of our remaining labor, our
resources are rapidly ending and the project may not be
completed on time.

BURNDOWN

900 h
800 h
700 h
600 h
500 h
400 h
300 h
200 h
100 h

Oh

11.09.17 25.09.17 09.10.17 231017

s REMaining Cumulative Work e REMaining Cumulative Actual Work

BURNDOWN

npleted and how much you have left. If the remaining

project may be late. Is your baseline zero

Fig. 11.1.52. Report, Burndown

178

3. Further we choose the following offered standard
report COST OVERVIEW
In the left part we see the amount: how much money was
allocated for the project, how much has been spent at this stage
of implementation in 40%, the funds that remained and the
costs in excess of the norm for one reason or another.

COST OVERVIEW

299 581,87 P

"REMAAINING COST

150 449,32 P

40%

COST OVERVIEW

Fig. 11.1.53. Cost overview

Also, pay attention to the table in our project, which
corresponds to these charts, it is obvious that in the first variant
everything is much simpler and more understandable.

3 4 Preparation 0,00 2 IponopumonansHoe 1000,00 2 0,008 1000,00 8 1000,00 2 0,008

4 Processing a job 1000,008 MponopusoansHoe. 1000,00 700,00 B/ 300,00 & 1000,00 2 0008

5 Clarifying the nuanc 0,008 Mponopuyoranskoe 0,008 0,002 0,008 0008 0008

6 Determining the impl 0,008 Nponopusonanskoe 0,00 0,002 0,002 0008 0008

7 Distribution of work 0,008 Nponopuwo 0,002 0,002 0008 0008 0008
z 8 4 Performance 66 010,00 8 0002 66010009 60601,009 5409,00 2
é 9 Beginning of work 0,008 0,00#. 0002 0008 0008
T Development of logi 10000,00 8| Mponopusor 10 000,00 2 6000,00 4000008 10000,00° 0008
S0 PaspaboTxka wHTepd 50000,00 MNponopusonanskoe| 50000008 45000,009 5000008 50000008 0008
A 4 Testing 0,002 Nponopusoranskoe 6010008 5000,00 100,009 601,002 5409,00
5 Tester 6000,00% 0,008 6000,00% 600,00 5400,00%
5 coffee 10,00# 0,00 10,00£ 1,008 5,008
g Drafting of documer 0,008 MponopumonansHoe 0,002 0,002 0,008 0008 0008
S 1 Deiivery of the proje 0,008 NponopusoransHoe 0,008 0,008 0008 0008 0008

Fig. 11.1.54. Cost overview table

In the lower right corner is also a graph that graphically
shows the above amounts.

179

4. But on the schedule, the PROGRESS VERSUS
COST should be paid attention.
Progress made versus the cost spent over time. If % Complete
line below the cumulative cost line, you project may be over
budget.

This is easy to understand, since we see that the project
is completed at 40% and our cost line exceeds this number, and
already at around 42-43%.

1t over time. If % Complete line below the cumulative cost

50% 350,009
300,009
250,009
200,009
150,002
100,009
50,002
0% 0,002
110917 250917 091017 231017

COMPLETE
s
g &
* R

CUMULATIVE COST

e Cumulative Percent Complete e Cumu lative Cost

Fig. 11.1.55. Progress versus Cost

5. The next report will show us the PROJECT
OVERVIEW

PROJECT OVERVIEW

Fig. 11.1.56. Project overview
180

Here we can see the overall percentage of completion of the
project, and the time when the project should be completed.
Here we can include a report on UPCOMING TASK

% Work Complete

UPCOMING TASK

Testing Drafting of documents

m% Complete

TASK STARTING SOON

Resource Names. Start Finish Work
Fri27.10.17 Fri27.10.17 1h

UPCOMING TASKS

Fig. 11.1.57. Upcoming Task

This report shows the current task, the percentage of its
implementation and the forthcoming next task, in this case,
after the completion of testing, it will be necessary to draw up
documents for delivery of the project to the customer.

5. Now go to the section Reports, Costs, select the

CASH FLOW

= s Report Tool BusyaneHsie orversi - Project npogeccHoransHsii

File Task Resource Q Tell me what you want to do

W B BEE EGE

Compare ~ New Dashboards Resources Costs In Progress Getting Custom Recent Visual
Projects | Report~ 0 7 z v Stated~ ~ ~ Reports
Project Cash Flow Export

Cost Overruns

Eamed Value Report

ol 149 13 MMaiciccl® 50 14937 299 581,87 P
-

Fig. 11.1.58. Cash Flow
Let's look at the example of this report and see how we

can edit the finished schedule.

181

Click 2 times on the graph that you want to change, on
the right appears the editing menu.

=
(<)
=
[S
= =
v
<
o

Fig. 11.1.59. Editing Menu

Let's change the time period, click Edit, change the
units from days to weeks.

CASH FLOW
i
i

Fig. 11.1.60. Changing the time bériod o

This graph shows the total costs (all project costs for
this period), and quarterly costs (in this case, selected for
weeks from September 18 to October 23), it turns out that a
huge amount of information is placed on one compact
schedule.

182

6. Further we can look at the TASK COST
OVERVIEW
On the left chart, we can see the actual and remaining labor
resources (that is, we see how much has already gone to pay
for the work of one or another specialist, and how much is still
available), as well as the exact amounts shown in the table and
the staff rate per hour of work.

Along the labor force, we still have material, such as
printer paper, or coffee for employees, although the costs are
not so great, but these resources are also very important.

The cost ratio for each category can be viewed as a pie
chart on the right.

TASK COST OVERVIEW

Fig. 11.1.61. Task Cost Overview

These charts correspond to the following table in the project,
agree that on the charts you can find the information you need
much quicker.

Fig. 11.1.62. Task Cost Overview - Table
183

This category also includes the report WORK OVERVIEW

‘Bemaining Work

. 593,07 h
382,07 h

Fig. 11.1.63. Work Overview

On the top schedule WORK, we can immediately
conclude that: If the line of the remaining total labor costs falls
down, the project implementation may be delayed. (it is very
convenient that this is written in the tooltip immediately near
the graph)

Pay attention to the graph at the bottom right, it displays
the remaining availability of labor resources by the example of
all project specialists, the resource ends when the job
completes, but as soon as the employee performs his part of the
work and the project moves to another person, the labor
resource of the first starts to recover.

WORK OVERVIEW

Fig. 11.1.64. Work Overview - more
184

7. We will finish our study of this new function of
visual reports with reports about TASK PROGRESS
Here we can see a general pie chart of the state of the tasks, as
well as tasks that need to be completed on time, and can not be
shifted or delayed.

5=

‘‘‘‘‘‘‘

Fi201017 Fi27.1017 10% 36h coffee(1]

Delivery of the project to the customer Fri27.10.47 Fri27.1017 0% oh

Fig. 11.1.65. Critical Tasks

The second graph shows milestones (key project dates),
and a schedule with the exact number of completed and
remaining tasks.

8. Actually, you can create your own report, edit it as
you like, specify stylistics, types of graphs, colors, etc.

1h Compantion

Fig. 11.1.66. Your own report
185

Control questions and tasks for part 11.1
1) Name the stages of the life cycle of software development.
2) How to configure MS Project?
3) How data is stored and displayed in MS Project (what are
"internal™ and "external” tables)?
4) What standard tables are part of MS Project?
5) What is a Gantt chart?
6) How is the group formatting of Gantt chart elements?
7) Name the built-in versions of Gantt charts in MS Project and
describe their purpose.
8) How the skeletal plan of the project is made?
9) What is a milestone? How to create milestones in MS
Project?
10) What types of connections can be defined between tasks in
MS Project?
11) What is a phase and how phases are created in MS Project?
12) Create a new project in the Microsoft Project.
13) Build a Gantt chart tracking the critical path of the project.
14) Plan resources (labour, material, financial) for tasks and
subtasks.
15) What are risks in the Microsoft Project environment?
16) Identification the risks. Classification of risks
15) In the Microsoft Project environment create and enter risks
in the previously created project.
16) Identify the risks. Carry out the classification of risks
17) Carry out a qualitative risk analysis
18) Study and use the main features of MS Project for creating
reports
19) Upcoming Task report
20) Cash Flow report
21) Work Overview report
22) Task Cost Overview report
23) Create your own report

186

11.2. PRACTICAL METHODS OF WORK
IN RATIONAL ROSE ENVIRONMENT
11.2.1. Visual modeling of information systems. use case and
actions diagrams in the design system Rational Rose
Theoretical information
Actors and Use cases
Algorithm of creation actors in the program Rational
Rose:
1. Click the right mouse button on the section Use Case
View in the browser window.
2. In the context menu that appears, select New — Actor
. The actor called New Class will be added to the list of the
browser window.
3. Select a new item list and enter an Actor name.
Browser window with a list of actors for the courses registration
system is shown on Fig. 11.2.1.

B Courses_modell
-3 Use Case View
&) Main
Lecturer
% Paying system
£ Registrator
Student
2 Associations
+ (3 Logical View
+- (3 Companent View
Deployment View
@8 Model Praperties

Fig. 11.2.1 Item list with Actor names

To create Use Cases in program Rational Rose do the
following:

1. Click the right mouse button on the section Use Case
View in the browser window.

2. In the context menu that appears, select New Use
Case. In the list of the browser will be a new precedent.

3. Enter the desired name for it.

187

Browser window with a list of Use Cases for
courses registration system is shown on Fig. 11.2.2.

B Courses_model
- 03 Use Case View
E Main
%4 Lecturer_additional_diagram
w- % Lecturer
#- % Paying system
+- % Pegistrator
#- % Student
+-<2 creation a catalog of courses
+-<= Registration on courses
+-< Request schedule of courses
+-<= Stoting information about courses
+-<= Storing information about lecturers
+-<= Stoting information about students
+-<2 The choice of courses for teaching
+-<x Userwverification
w57 StatedActivity Model
-2 Associations
+-[J Logical View
3 Component vigw
Deplayment View
8 Madel Properties

+

Fig. 11.2.2. List of Use cases

Use Case diagrams

Use case diagram is a graphical representation of all or
part of the actors, precedents and their interactions in the system.
Each system has usually the main Use case diagram, which shows
the boundaries of the system and basic functional behavior of the
system. Other Use case diagrams can be created if necessary.
Some examples:
- a diagram that shows all the precedents for certain actor;
- a diagram that shows all the precedents implemented in this
iteration;
- a diagram showing a precedent and all his relations.

To create the main Use case diagram in program
Rational Rose do the following:

1. Double-click on the item Main in the Use Case
View in the list of the browser to open the diagram.

2. Select the actor in the browser and drag it to the
diagram using the mouse.

188

3. Similarly place other necessary actors on the
diagram.

4. Select precedent in the browser and drag it to the
diagram using the mouse.

5. Similarly place other necessary precedents on the
diagram.

Also Actors and Use Cases can be obtained directly in
the diagram using the toolbar.

To create a communicative associations in program
Rational Rose:

1. On the toolbar, click the button Association or
button Unidirectional Association. If desired button is
missing, click the right mouse button on the toolbar, in the
context menu that appears, select Customize to add a button.

2. Click on the actor - the initiator of communication
and drag the communication line to the desired precedent.

To create a relation "include™ in program Rational
Rose you need:

1. On the toolbar click on the button Unidirectional
Association.

2. Click on using precedent and drag a line of
communication to the used precedent.

3. Double-click on the communication line to open the
Specification.

4. In the Stereotype select "'include™.

Creating of relationship *‘complementary' in the
program Rational Rose involves the following steps:

1. Click on the Unidirectional Association on the
toolbar,.

2. Click on the precedent with additional features and
drag an association line on the basic precedent.

3. Double-click on the line to open the Specification.

4. In the Stereotype select "extend™".

The main use case diagram for the system of

189

registration of training courses is shown on fig. 11.2.3.

The procedure to create of additional use case
diagrams in program Rational Rose:

1. Click the right mouse button on the section Use Case
View listed browser.

2. In the context menu that appears, select New — Use
Case Diagram .

3. Enter the name of the diagram.

4. Click the diagram and place on it the appropriate
actors, precedents and communications.

Additional use case diagram is shown on fig. 11.2.4.

Fig. 11.2.3. Main Use Case Diagram

@ Use Case Diagram; Use Case View / Lecturer_additional_diagram

Fig. 11.2.4. Additional Use Case Diagram
Activities
Activity diagrams reflect the dynamics of the project

190

and are the flow management schemes in system from action
to action and also parallel actions and alternative flows.

In particular point of lifecycle the action diagrams may
represent flows between functions or within a single function.
At different stages of the life cycle they are created to reflect
the sequence of operations.

Activity diagrams illustrate actions, transitions
between them, elements of choice and synchronization lines.

To construct the activity diagram in program Rational
Rose do the following:

1. Click the right mouse button on the section Use Case
View listed browser.

2. In the context menu that appears select New —
Activity Diagram. The new diagram will be added to the list.

3. Enter name of the diagram.

4. To open the diagram, double-click on it in the
browser.

Browser window with the action diagram is shown on
fig. 11.2.5.

Fig. 11.2.5. Activity Diagram
Activities

The activity is the performance of certain behavior in
191

flow of system control (see fig. 11.2.6).

To create an activity in program Rational Rose:

1. Click the button Activity on the toolbar.

2. Click on the activity diagram to place the element
that represents the activity.

3. Enter a name for the new activity.

Fig. 11.2.6. Activities

Transitions

Transitions are used to show the path of control flow
from action to action (see. fig. 11.2.7). They are usually made at
the end of certain action.

To build transitions in the program Rational Rose:

1. Click button Transition on the toolbar.

2. Click on the initial action on the diagram and move
the arrow to the next action.

E8 Activity Diagram: Uss Cass View / Creation a catalog

Fig. 11.2.7. Activities and Transitions

Elements of choice
192

In the simulation of control flows in systems often need
to show place of their separation on ground of conditional
Choice. Transitions from the choice element include restrictive
conditions that determine which direction of transition will be
selected. The elements of choice and conditions allow to set
an alternative way of control flow.

To create an element of choice in the program Rational
Rose do the following:

1. Click on the button Decision on the toolbar.

2. Click on the activity diagram to put an element
of choice in it.

3. Enter a name for the new element.

4. Click on the State Transition toolbar.

5. Click on the action in the activity diagram and
move the arrow to the element of choice.

The element of choice is shown in Fig. 11.2.8.

5] Activity Diagram: Use Case View / Creation a catalog

Creating curriculum

Appointment of tectursr
for courses

‘ Are all lacturers appointed?

Fig. 11.2.8. Element of choice

Consistency of creation conditional branches in the
program Rational Rose:

1. Click State Transition button on the toolbar.

2. Click the element of choice in the activity diagram
and move the arrow to the further action.

3. Double-click on the arrow to go to open the
Specification.

193

4. Click on the tab Detail.
5. In the box Guard Condition input condition of
transition .
Conditional branches are depicted in Fig. 11.2.9.

] Activity Diagram: Use Case View / Creation a catalog

Creating curriculum

Appointment of tecturer
for courses
[
Are all lacturers appointad?

Fig. 11.2.9. Conditional branches

Synchronization lines

Typically in the stream there are actions that are
performed in parallel. Synchronization line allows you to
specify the need of simultaneous execution, and also provides
the whole performance of actions in a stream (that indicates
the need to complete certain actions to move to the next. Thus,
the synchronization lines can have multiple lines of input
transitions and a single output in the flow or one input and a
few outgoing.

To create a synchronization line in program Rational
Rose:

1. Click on the button Horizontal Synchronization or
Vertical Synchronization on the toolbar.

2. Click on the activity diagram to put on it a
synchronization line .

3. Click on the button State Transition on the toolbar
and add the necessary input and output transitions to the

194

synchronization line.
Synchronization lines are shown on fig. 11.2.10.

4 Activity Diagram: Use Case View / Creation a catalog

Creating curriculum

Appointmerit of tecturer
for courses

re all leciurers appointed?

[Yes]

Creation a
catalog

Sending the catalog 1o Sending the catalog to
the repository the students

Opening
registration

Fig. 11.2.10. Synchronization lines

Swimlanes

Swimlanes divide the activity diagram in several areas.
This is necessary in order to show who is responsible for the
implementation of activities at each site.

Algorithm of creation of swimlanes in the program
Rational Rose:

1. Click on the button Swimlane on the toolbar.

2. Click on the activity diagram to create a new section
called New Swimlane.

3. Double-click on the name of the new section to open
the Specification (Options).

4. Enter the desired name in the field Name.

5. To resize, move the section of the border.

6. Move all the necessary activities and transitions on

195

the diagram into the new section.
Activity diagram with swimlanes is shown on fig.
11.2.11.

F4| Activity Diagram: Use Case View / Creation a catalog,

Registrator Lecturer

Creating curriculurn
The choice of courses
for teaching
Appointment of tecturer
for courses

Are all fsciursrs appainfad?

[Yes]

Creation a
catalog

Sending the catalog to Sending the catalog to
the repositony the students

Y

Opening
registration

Fig. 11.2.11. Swimlanes

The start and the end states

To indicate the initial and final states in the flow of
system control the special characters are used. The start state
is represented by solid circle, and the end - by solid circle,
circled by additional circle. Usually in the flow there is one
start state and several end states - for each alternative
direction.

The sequence of creating the start and the end states in
program Rational Rose:

1. Click on the button Start State or End State on the
toolbar.

2. Click on the activity diagram to put the symbol of the
start or the end state on it.

196

3. If you added the initial state, click on the button State
Transition on the toolbar, and then on the symbol and the initial
state transitioned to the first steps in the flow. Similarly
include the final state to the diagram.

The activity diagram with start and end states is shown
on fig. 11.2.12.

¥4 Activity Diagram: Use Case View / Creation a catalog

Registrator Lecturer

Creating curriculum
The choice of courses
for teaching
Appointment of tecturer
for courses

Are aif lecturers appointed?

[Yes]

Creationa
catalog

Sending the catalog o Sending the catalog to
the repository the students
Opening
registration O

Fig. 11.2.12. Start and end states

11.2.2. Development of class diagram as a model
of real object
Theoretical information
Classes

An object is some kind of real world essence or
conceptual essence. The object may be something specific,
such as a truck or computer, or conceptual, such as a chemical
process, a banking transaction, a trade order, a credit history, or
a rate of return.

197

An object is a concept, abstraction, or thing with
clearly defined boundaries and meaning to the system. Each
object in the system has three characteristics: state, behavior
and individuality.

The condition of an object is called one of the
conditions in which it can be. The state of the system usually
changes over time and is determined by a set of properties
called attributes, property values, and relationships between
objects. For example, a training course object in a course
registration system may be in one of two states: open to
enrollment or closed to enrollment. If the number of students
enrolled in the course is less than ten, the course enrollment
continues. After registration of the tenth student, it is
terminated.

Behavior determines how an object responds to
requests from other objects and what the object itself can do.
The behavior is implemented using a set of operations for the
object. In the course registration system, the object of the
training course may have operations to add a student and
remove a student.

Individuality means that each object is unique, even
if its state is identical to that of another object.

Class is a description of a group of objects with
common properties (attributes), behavior (operations),
relationships with other objects, and semantics. So the class is a
template for creating an object.

Each object is an instance of a particular class and
cannot be an instance of several classes. For example, a class
training course may be defined by the following characteristics:

- attributes - place of employment, time of employment;
- operations - to get a class, get class time, add a student to
the course.

Class represents one and only one abstraction, that is,
it must reflect one basic essence. For example, a class that can

198

store student information and course data that a student has
attended for several years is not a "good" class because it does
not represent one entity. This class should be divided into two
related classes: student and student history.

Class names are selected according to the concepts of
the visual area. In UML, classes are represented as separated
rectangles. The upper section specifies the name of the class,
the middle section contains its structure - attributes, and the
lower section describes its behavior - operations. The class is
shown in fig. 11.2.13.

B [untitled)
+-[C7J Use Case View >
=7 Logical View Hae4aneHWA kypc
Main EpMicue 3aHATe
+-B HapvanbHui kupe
2 Associations ®Nogatn cTygenHTal)
+-(CJ Comparnent View
Deplopment Wiz
(@8 Model Properties

a) b)

Fig. 11.2.13. a) A class created in a browser window
b)Notation of the UML language for the class

Each object is an instance of a particular class and
cannot be an instance of several classes. For example, a class
training course may be determined by the following
characteristics:

- attributes - place of employment, time of employment;
- operations - to get a class, get class time, add a student to
the course.

The procedure for the construction of classes in the
program Rational Rose:

1. Click the right mouse button on the section Logical
View in a browser window.

2. In the context menu that appears , select New —
Class. A new class called NewClass will be added to the

199

browser list .

3. Enter class name.

Consistency create class diagram to show the
attributes and operations in program Rational Rose:

1. Click the right mouse button on a package in the
browser window.

2. In the context menu that appears, select New —
Class Diagram. A new diagram will be added to the browser
list.

3. Enter the name of the new diagram.

To display all attributes and operations in program
Rational Rose do the following:

1. Click the right mouse button on a class in the
diagram.

2. In the context menu that appears select Options —
Show All Attributes.

3. Call the class context menu and select Options —
Show All Operations.

Class diagram for the package Items of University is
shown on Fig. 11.2.14.

Ei Class Diagram: Logical View / NewDiagram

O
*Appointment of lecturer{)

Manager of [ecturer's courses

O

Offer()
*Appaintment of lecturer()

Fig. 11.2.14. Class diagram for the package Items

200

Sequence of creation relation of inheritance in
program Rational Rose:

1. Open the class diagram, which shows the hierarchy
of classes.

2. Click on the button Class on the toolbar, and then on
the diagram to place here class.

3. Enter the name of the class. The class can also be
created in browser and moved to the diagram.

4. Click on the button Generalization in the toolbar.

5. Click on the subclass and draw a line of
communication to the superclass.

Relations of inheritance are shown on fig. 11.2.15.

Ei Class Diagram: Logical View / Main

Fig. 11.2.15. Relations of inheritance

The class in the browser window is shown in fig.
11.2.16.

Relations | Comporents | Nested | Files | ANSIC++ |
General | Detal | Operatons | Awbues |

Name: [Cryenr Parent Logical View

Crune - e nogyina, aka HauseTeca e isepoimer]

Fig. 11.2.16. Class Student
201

An entity class is used to model data and behavior with
a long lifecycle. This type of class can represent the essence of
the real world or the internal elements of the system. Such
classes are usually independent of the environment, that is,
they are insensitive to the interaction of the environment with
the system. Therefore, they are application-independent and
can be used in a variety of applications.

The first step is to study the responsibilities outlined in
the event stream to identify precedents (what the system should
do). Essential classes are usually the classes that the system
needs to perform certain responsibilities

The entity classes are usually defined at the processing

stage. They are often called visual area classes because they are
abstractions of real-world objects.
Boundary classes provide interaction between the environment
and the internal elements of the system. These classes provide
an interface for the user or other system (that is, for the actor).
They form an externally dependent part of the system and are
used to model the system interfaces.

Actor / script pairs are studied to identify boundary
classes. Such classes defined in the processing phase are
usually top-level classes. For example, you can model a
window but not model its dialog elements and buttons. In this
case, you will describe the requirements of the user interface
but do not implement it.

Boundary classes are also used to communicate with
other systems. At the design stage, these classes are being
refined and discussed for the implementation of interaction
protocols.

Control classes are used to model the sequential
behavior of one or more precedents and to coordinate events
that implement the behavior they contain.

Governing classes can be represented as classes,

202

"executing" precedent and determining its dynamics. They are
usually application dependent.

In the early stages of processing, management classes
are added for each actor / precedent pair. Such classes
determine the flow of events in precedents.

The management class for each actor / precedent pair is
created initially. In further analysis and design, management
classes can be excluded, separated, or combined.

Stages of creating stereotypes for classes in the Rational
Rose program (fig. 83):

1. Right-click on the class name in the browser list.

2. In the context menu that appears, select Open
Specification.

B8 [untitled)
+-[C7 Use Case View
=7 Logical View
Main
O TMpearer
—>), Agsociations
O Yyboeui kypc
) Buknanay
HZ) T apatdeTpu KpCiE BUKAa0a43
) MeHenwep kypcis Bk nalaNa
KO [onaeaHHA HaBYansHora kypea
+-C3 Component View
Dreployment 'iew
{8 Model Properties

Fig. 11.2.17. Classes for the script for adding a training course

3. Click the General tab.

4. In the list that opens, - Stereotype - select the desired
stereotype. To create a new stereotype, enter its name in the
Stereotype list box.

If there are not many classes in the system, it is quite
easy to manage them. But many systems consist of a large
number of classes, so a mechanism is needed to break them
down into groups and make it easier to manage and reuse. The
concept of packages is useful here.

A package in a logical representation of a model is a

203

collection of classes and other related packages. By combining
classes into packages, we can get a higher-level representation
of the model. By examining the contents of the package, on the
contrary, we get a more detailed view.

Each package contains an interface implemented by a
set of its public classes, that is, with which classes from other
packages can communicate. Other package classes are
implementation classes that do not interact with classes in other
packages.

In a sophisticated system, packets can be created at the
processing stage to facilitate perception. In a simpler system,
the classes highlighted in the analysis phase can be grouped
into one package representing the system itself. In the course of
further analysis and design, packages are needed to group the
classes used in the system architecture.

In UML, packets are represented as folders.

To create packages in Rational Rose:

1. Right-click Logical view in the browser window.

2. In the popup menu that appears, select New —
Package.

3. Enter the desired package name.

The package created in the browser list is shown in fig.
84. After creating the package, you can place the required
classes in it.

rb (unitled]
#-(7 Use Case View
-7 Logical View
+- (7 BinomocTi npo noaei
Main
3, Associations
+-(7 Companent View
Deployment Yiew
(3 Model Propettes

Fig. 11.2.18. Package in browser

Objects and classes in the course registration system

Consider the scenario of adding a course (which is an
internal stream of precedent for selecting subjects to teach.
This scenario allows the teacher to select a course for a
particular semester.

Although we look at this process step by step, in
practice most steps can be done at the same time.

This precedent only interacts with the actor teacher.
This scenario is only one of the opportunities provided by
precedent (it also determines that the teacher can modify,
delete, view, and print courses). This means that there must be
a mechanism in the system that allows the teacher to choose
the desired action. To provide the needs of the teacher, a
special class is created - the course parameters of the teacher.

Additionally, we can specify a class that is used to add
new courses available to the teacher - to add a training course.

This scenario consists of subjects, training courses, and
assignments of teachers. We can distinguish three class-
entities: subject, training course and teacher.

We will add one management class to handle the event
stream for precedent - the teacher's course manager.

Now classes (with selected stereotypes) can be added to
the model (see Fig. 11.2.19).

35 prnapasnpan2d
+-C3 Use Case View
=3 Logical Wiew
--(C3 BiaomocTi npo noned
) Buknanay
3, Associations
=3 IHTeppeiicn
HZ NoaaeaHHa HaB4aneHoro kypea
HD) MapameTpu Kypcie Buknanads
—>), Agzociations
—1-C3 Ofiexti yrisepouTeTy
() Mensnkep KYpCiE BUKIa0a4a
) Mpeamer
() Yufosmil kypo
—>), Agzociations
b ain
2 Associations
+-[CJ Component View
Dieployment View
{#8 Model Properties

Fia. 11.2.19. Packaaes

The next step is to merge the classes into packages. At
this stage, we distinguish six classes: subject, training course,
teacher, teacher course parameters, adding training course and
teacher course manager. They can be divided into three logical
groups: university-specific objects; objects containing
information about people; interfaces for actors. So we can
create the following packages: Interfaces, University Objects
and People Info. The classes are then placed into appropriate
packages (see Figure 22).

Class diagrams

As new classes are added to the system, their text
rendering becomes uncomfortable. Class diagrams help
graphically represent some or all of the classes in the model.

The main class diagram in the logical representation of
the model usually displays the system packages. Each package
also has its main class diagram, which usually contains public
classes of the package. Other charts are created as needed.

Here are some typical examples of using class
diagrams:

- viewing all classes of implementation in the package;
- reviewing the structure and behavior of one or more classes;
- View the class hierarchy.

Rational Rose automatically creates a master class
diagram in the logical representation of the model.

To add packages to the main class diagram, you must
do the following:

1. Double-click the Main diagram list in the browser to open
the diagram.

2. Select the desired package from the list.

3. Drag the package to the chart.

The main class diagram for the registration system is shown in
fig. 11.2.20.

206

Ei"Class Diagram: Logical View S Main ggﬂ

IHTepdercu
[
Binomocti npo OBbekTu
nHgei yHIBEPCHTETY

‘ | » [

Fig. 11.2.20. Main class diagram

Stages of creating a master class diagram of a package
in Rational Rose:

1. Double-click the package image in the class diagram.
The package will open and the main class diagram will appear.

2. Select the class you want from the browser list and
drag it to the chart with the mouse. You can use the Format —
Stereotype display menu command to display the class
stereotype in the diagram.

Conclusions

Objects - a computer representation of entities (objects
of the real world or concepts invented by man). An object is a
concept, abstraction, or thing with clearly defined boundaries
and meaning for the system. Each object in the system has three
characteristics: status, behavior and personality. The state of the
object is one of the conditions in which it can be. Behavior
characterizes an object and shows how it responds to requests
from other objects. Individuality means that each object is
unique, even if its abundance is identical to that of another
object.

A class is a description of a group of objects with
common properties (attributes), behavior (operations),
relationships with other objects (associative or aggregation),
and semantics.

A package in the logical representation of a model is a

207

collection of classes and other related packages. By combining
classes into packages, we can get a higher-level representation
of the model.

Class diagrams help graphically depict some or all of the
system classes. Class diagrams can also be created in the
precedent model view. They are usually attached to a precedent
and contain representations of the classes involved in their
execution.

Defining relationships

The system consists of a large number of classes and
objects. Its behavior is ensured by the interaction of objects.
For example, a student is added to a course when a message is
added to the course to add a student. In this case, it is said that
the object sends a message to another object. Relationships
serve as conductors between objects. Two types of
relationships that can be distinguished in the analysis phase are
association and aggregation.

An association is a bidirectional semantic link between.
classes. This is not a data flow defined in structural analysis
and design - data can flow in both directions of associative
communication. The presence of association between classes
indicates that the objects of these classes are interconnected.
For example, associative relations between subject classes and
the course manager mean that the objects of the subject class
are related to the objects of the course manager class. The
number of related objects depends on the strength of the
associative relationship.

In UML, associative relationships are represented as a
line connecting connected objects.

The sequence of associative relationships in Rational
Rose:

1. In the toolbar, click the Association button. If it is not,
right-click in the toolbar and select Customize from the context-
sensitive menu that appears.

208

2. Click one of the classes in the class diagram.
3. Drag the associative link to the second class.
The associative relationship between classes is shown in

Fig. 11.2.21.

YuBoEMA KkypC

(from OBEKTH YHiBERpCHTETY)

hWeHenskep kypcie
e ERE] Mpeamer

(from DEckTH yuieepouTeny) (from OBeNTH yHiEepoHTETY)

Fig. 11.2.21. Associative

Aggregation is a special form of association between the
whole and its part or parts. Aggregation is known as a "part of"
or "containing" type relationship.

To create aggregation relationships in Rational Rose:

1. In the toolbar, click the Aggregation button. If it does
not, right-click on the toolbar and select Customize from the
context menu that appears.

2. In the class diagram, click on the class that appears as
a whole and drag the aggregation link to the class that is part of
it.

If two classes are rigidly bound by the whole-to-part
relationship, then this is a typical aggregation relationship

Whether the relationship is an association or an
aggregation often depends on the subject area. To determine the
relationship between the two classes, study the scenarios. The
transmission of messages between objects indicates that the
latter interact with each other. Associations and aggregations
provide an opportunity for interaction.

209

The diagram of classes with the indicated relations is
shown in fig. 11.2.22

@ MeHeakep kypoie

BHKNagava

MapameTpm kypcie eMknagaya

(from InTepdedicu)

Mpeamer =

: - T .
ﬂDﬂaBEHHH HaBYaNEHOIo KypCca
(trom IuTapdaiicn)

] (]
YuBOBMA KkypC

< | » [

Fig. 11.2.22. Diagram of classes with the indicated relations

Relationship between packages

Relationships between packages are also included in the
model. This type of communication is a dependency relation
and is represented as a dotted arrow pointing to the dependent
packet. If packet A depends on packet B, then one or more
classes in packet A initiate communication with one or more
public classes in packet B. Package A in this case is called
packet-client, and packet B is packet-supplier.

Relationships between packages are revealed by
examining scenarios and relationships between classes of the
system. Because this is an iterative process, relationships can
change during analysis and design.

In a script to add a training course, the Add a Training
Course class sends a class manager message to the teacher.
This indicates that there is a connection between the Interfaces
package and the University Objects. At this stage, we cannot
isolate any relationship with the People Information package.

To create relationships between packages in Rational

210

Rose:

1. Click the Dependency Relationship button in the
toolbar.

2. Click on the client package and drag the line to the
provider package.

Conclusions

Relationships act as a guide between objects. The two types
of object relations that can be distinguished in the analysis phase are
associations and aggregations. The association is called bidirectional
semantic communication between classes. Aggregation is a special form
of association between the whole and its part or parts.

Scenarios are being explored to find relationships between the
two classes. Packages can be linked by a dependency relation. If packet
A depends on packet B, then one or more classes in packet A initiate
communication with one or more public classes in packet B.

Attributes

Most class attributes are found when analyzing the
subject area, system requirements, and event flow descriptions,
and when compiling a class description. In addition, the visual
area itself is a good source for defining attributes. For example,
system requirements state that the subject name information, its
description and number of teaching hours are contained in the
catalog of training courses per semester. From this it follows
that the title, description and number of lessons are the
attributes of the subject class.

The Rational Rose attribute creation sequence:

1. Right-click on a class in the browser window.

2. In the popup menu that appears, select New —
Attribute.

3. Enter a name for the new attribute.

The attribute definitions in the documentation should
be concise and clear and contain information about the attribute
assignment, not its structure. Here is an unsuccessful example
of the attribute description of the class name of the subject:

211

"Character string up to 15 characters long". The following
variant will be correct: "Name of academic subject used in
university publications".

To describe attributes in Rational Rose:

1. In the browser window, click the "+" icon to the left
of the class name to open a list of its properties.

2. Select an attribute by clicking on it.

3. Place the cursor in the description box and enter a
description for the class attribute.

The class implements a number of responsibilities
that determine the behavior of its objects. Responsibilities are
fulfilled through class-specific operations.

To create an operation in Rational Rose:

1. Right-click on a class in the browser window.

2. In the popup menu that appears, select New —
Operation.

3. Enter a name for the new operation.

Attributes and operations can be shown in the class
diagram. Most often, it is created to reflect the structure and
behavior of package classes. Relationships to this chart are
usually not tolerated.

The sequence of creating a class diagram to display the
attributes and operations of a package in Rational Rose:

1. Right-click on the package in the browser window.

2. In the popup menu that appears, select New — Class
Diagram. A new chart will be added to your browser list.

3. Enter a name for the new chart.

To display all attributes and operations in Rational
Rose, follow these steps:

1. Right-click on a class in the chart window.

2. In the popup menu that appears, select Options —
Show All Attributes.

3. Recall the context menu for the class and select
Options — Show All Operations.

212

The class diagram for the University Objects package is shown
in fig. 11.2.23.

Mpegmer

%gasea HapuansHui Kkypc
s

B Sasiosi rogmnn ‘OprmaHHﬂ NpOnosMLif)

SBcTaHoBNEHHA BMknanaval

BOTAMMAHHA NPONOZULI
SBCTAHOBNEHHA BUKNALE4E()

MeHenxep kypcie BMKNaREYA

‘OrpmmaHHﬂ nponasMuiif)
% BeraHoEneHHs EMKNaAEYA()

Fig. 11.2.23 Class diagram for the University Objects package

A relationship can also have structure and behavior.
This occurs when the information is linked to objects, not to
the object itself.

Consider the following example. A student can attend
up to four training courses, and a training course can be read by
several students - from three to ten. Each student receives a
grade for the course. Where should the score be stored? It does
not belong to the student because he / she will probably receive
different grades in different subjects. The grade does not
belong to the course, because students will receive different
grades for this course. Assessment information relates to the
relationship between the student and the course. They are
modeled using an associative class that behaves like any other
class and can also be relevant. In our example, the student
receives an assessment report that includes the associated
assessment objects.

To create associative classes in a program in Rational
Rose:

1. Click the Class button on the toolbar.
2. Click on the diagram to place a class on it.
3. Enter a name for the class.

213

4. Add the necessary attributes and operations for the class.

5. Click the Association Class button in the toolbar.

6. Click on the associative class and draw a line to connect
the classes that associate the associative class.

7. If necessary, add additional relations to the associative
class.

The associative grade is shown in Fig. 11.2.24.

YuBoeui kypo Crygent

(fram DBerTh yHikepenTETy)

OujHka 3eiT

< | i}
Fig. 11.2.24. Associative class

Conclusions

The class performs a number of responsibilities that determine
the behavior of its objects. Duties are performed through specific
operations. The structure of the object is described by the attributes of
the class.

Each attribute is a data field contained in a class object. An
object derived from a class endowed with the values of all class
attributes. Attributes and operations defined for the class are the main
significant and functional elements in the application being developed.

Many class attributes are found when analyzing the domain,
system requirements, and description of event streams, as well as when
compiling a class description. In addition, the domain itself is a good
source for defining attributes.

A relationship can also have structure and behavior. This occurs

214

when the information is linked to objects, not to the object itself.
Relationship structure and behavior are modeled using associative
classes.

Inheritance

Inheritance is called the relationship between classes when
one class uses part of the structure and behavior of another or more
classes. Imitation creates a hierarchy of abstractions in which a
subclass is inherited from one or more superclasses. Inheritance is
also called a hierarchy of the same type or appearance. The
subclass inherits all the attributes, operations, and relationships
defined in each of its superclasses. Therefore, all attributes and
operations defined at the top level of the hierarchy will be inherited
by classes at the lower levels. Additional attributes and operations
applied only at this level of the hierarchy can be added to the
subclass. The subclass may contain its own implementation of the
inherited operation.

There are no restrictions on the number of classes in the
hierarchy.

Inheritance allows you to reuse classes. You can create a
class for one application, and then generate a subclass with
advanced functionality for use in another application.

There are two ways to define inheritance - generalization
and specialization. In any system under development, both methods
are commonly used.

The sequence of creating an Fig. 103. The relation of
imitation inheritance relationship in Rational Rose:

1. Open the class diagram showing the inheritance
hierarchy.

2. Click the Class button on the toolbar and then the
diagram to place a class on it.

3. Enter a name for the class. The class can also be
created in a browser and moved to a chart.

4. Click the Generalization button in the toolbar.

5. Click on the subclass and draw the link to the

215

superclass.
The inheritance ratio is shown in Fig. 11.2.25.

Kopuetysad

SN

O @

CryaeHt

Buknagay

» [l

<l

|
Fig. 11.2.25. The relation of inheritance

Inheritance tree

The basis for specialization (that is, the purpose of creating a
subclass) in relation to imitation is called a discriminator.

For example, one of the discriminators for the class is the
subject of study. The classes in the subject and the extramural subject
may become subclasses for the class of objects created on the basis of
this discriminator. Inheritance ratio for all subclasses received from
one discriminator, are represented in the form of a tree. Another
subclass of a class may be a compulsory class. This subclass will not
be part of the imitation tree because it belongs to another
discriminator - the object type. The issue of identifying multiple
discriminators for one class should be carefully considered. For
example, what happens if the required item is also full-time? Is this an
example of multiple inheritance? Do you need to apply aggregation
here? In the course of analyzing and designing the answers to these
questions, we will gradually get a complete model structure.

To create an inheritance tree in Rational Rose:

1. Open the class diagram showing the inheritance
hierarchy.

2. Click the Class button on the toolbar and then the chart

216

to place a class on it.

3. Enter a name for the class. The class can also be created
in a browser and moved to a chart.

4. Click the Generalization button on the toolbar.

5. Click on the subclass and draw the link to the
superclass.

6. For each subclass that is part of the inheritance tree:
click the Generalization button in the toolbar, click on the
subclass, and draw a generic link to the inheritance icon (as a
triangle).

The tree-like relationship of inheritance is shown in Fig.
11.2.26.

— —
1
Buknanay Crypent
ECran pofioTh Q)Flpe,u.MeT
Ima %\Mﬂ
Q)Ip,_HoMep ﬂ)\n_HoMep
-
4 | » [

Fig. 11.2.26. Inheritance hierarchy for the class

After creating a superclass, attributes, operations, and
relationships are placed at the highest level of the hierarchy
whenever possible. What properties should be transferred? Consider
a hierarchy with a base user class. The attributes, operations, and
relationships for the subclasses are shown in Figs. 31. Since the
attributes of the name and id are the same format, they can be
confidently transferred to the superclass of the user.

To move attributes and operations in Rational Rose:

1. In the browser window, click the "+" icon to the left of the
subclass to open a list of its properties.

217

2. Select the attribute or operation you want to move.

3. Drag an attribute or operation to a superclass.

4. Remove this attribute or operation from other subclasses.

The inheritance hierarchy after the attribute transfer is shown in
Fig. 11.2.27.

KopucTyeay

Q)\Mﬂ
&pln_womep

i]

Buknanay CTyReHT
Q)CTa)K poboTh Q)Hpe,u,MeT

J | .8

Fig. 11.2.27. Attributes Moved to Superclass

Single and multiple inheritance
In single inheritance, the class contains a single set of
descendants, that is, one chain of superclasses (for example, a car is
a car and a car is a vehicle). Multiple imitation involves more than
one chain of superclasses (an amphibian is a car, a car is a vehicle, at
the same time an amphibian is a boat and a boat is a vehicle).
Multiple inheritance raises a number of problems, including name
conflict and multiple copies of inherited properties. The way to
solve such problems is chosen depending on the programming
language, in particular, virtual base classes in C ++. Multiple
inheritance can cause confusing and hard-to-follow code - the more
superclasses it is, the harder it is to determine where it came from
and what would happen when making changes. Conclusion: Use
multiple inheritance only when needed and with extreme caution.
Inheritance and aggregation
Inheritance is often misused. There is an opinion that “the
more it is used, the better the code will become"”. This is a

218

mistake. In fact, misuse of imitation can lead to problems. For
example, a student may study full-time or part-time. Let's
create a superclass student and two subclasses - full-time
student and part-time student. There are some problems with
this structure. What happens if:

- the student of the full-time department decides to go to
correspondence? This means that the object will have to
change its class ?;

- Will another dimension be added (for example, a student
receiving a scholarship and not receiving a scholarship)? New
subclasses will be needed here to present scholarship
information, as well as multiple inheritance for support for all
combinations (full-time student, scholarship recipient, part-
time student, scholarship recipient, and so on).

Inheritance should serve to separate the community
from the specific. Aggregation - to reflect combined
relationships. Often, both types of relationships are used
together. The student class has a classification (aggregation),
which, in turn, is divided into full-time and part-time
(imitation) classes - see. Fig. 11.2.28.

Kopuctysay

%IMH
%I,D,_Hnmep

T

Buknanay CryaeHt Knacupikauja
ECam pofoTe B Mpeamer [|

| (O4HE HEEYEHHA | | 3a04HE HABYAHHA |
[| [|
[1 L 1

Fig. 11.2.28. Inheritance and aggregation

219

Conclusions
Inheritance allows you to create a hierarchy of classes
when shared structure and behavior are shared between them.
The term “superclass" refers to a class containing common
information. Descendant classes are called subclasses. The
subclass inherits all the attributes, operations, and relationships
defined in all its superclasses.

11.1.3. Software for class diagram implementation
Theoretical information

A class is a special design of an object-oriented
programming language used to group related variables and
functions. In this case, according to OOP terminology, global
class variables (member variables) are called data fields (also
properties or attributes), and function members are called class
methods. A created and initialized
class instance is called a class object. Based on a single class,
you can create multiple objects that will differ in their state
(field values).

Classes can be used to create subclasses that inherit the
properties and behavior of parent classes. This allows you to
create an entire class hierarchy.

The methods implement the behavior of objects.
Practically all work with objects occurs through methods. They
can change the state of the object or simply give access to the
data encapsulated in the object. There are several types of
methods that have some differences in different programming
languages. Different access rights can be assigned to methods
and data fields, which will depend on them from different parts
of the code. Access rights and type of methods are specified by
modifiers when describing methods. The method that creates
and initialises an instance of a class is called a class
constructor. The method that implements an object is called a
class destructor.

220

Basic principles of object-oriented programming:

- encapsulation;
- inheritance;
- polymorphism.

Encapsulation is a mechanism that combines data and
methods that process this data and protects both against
external influences or misuse.

In the middle of the object, data and methods can have
different degrees of openness. Typically, open class members
are used to provide an interface controlled by its closed part.

Inheritance is the process by which one object can
acquire the properties of another object and add features
specific to itself.

Polymorphism is a programming concept that uses a
common interface to process data of various specialized types.

A method in object-oriented programming is a
subroutine (procedure, function) that is used exclusively with a
class or with an object.

Similar to a procedure in procedural programming
languages, a method typically consists of a sequence of
operations to perform an action, a set of input parameters to
configure this action, and possibly an output value of some
type (value to be returned).

The purpose of the methods is to take some action on
the class fields (member variables) and provide a mechanism
for accessing those data fields that are encapsulated in the
object or class.

Operator overloading is one way of realizing a
polymorphism that consists in the possibility of several
different applications of the operator having the same name but
differing in the types of parameters to which they are applied
simultaneously.

221

Work execution
In the Rational Rose environment, we create a matrix
class (Fig. 11.2.29).

rnatrix

& rnassiv - float
Sn :int

m o int

Fig. 11.2.29. Matrix class in the environment Rational Rose

Let’s describe our class in the Documentation section
(Fig. 11.2.30).

Class Specification for matrix @@
Relations | Components I Nested] Files] ANS] C++]
General Detail I Operations I Altributes]
Mame: matriz Parent: Logical Wiew
Tope: Classz -
Stereotype: -
Export Caontral

" Public ¢ Protected © Private © Implementation

Documentation:
K.nac matpuu]

0K I Cancel | Apply | Erowse'| Help
Fig. 11.2.30. Class description

Let's create class fields - two-dimensional array and its
dimension (number of rows and columns) - see. Fig. 11.2.31,
11.2.32, 11.2.33.

222

Class Attribute Specification for massiv

General | Detail | ANSI Ces |

Mame: massiv Class: matrix

Type: float = »| ¥ Show classes
Stereotype: -
Initial value: |

Expart Cantral

" Public © Protected ™ Private © Implementation

D ocumnentation:

3MiHHA, WO ABNAE COH0I AEOEHMIPHHE MAacHE

ok | Cancel | | Erowsev| Help |

Fig. 11.2.31. The massiv variable and its description

Class Attribute Specification for n

Gereral | Detail | ANSI Coe |

ame: lﬂ— Class: matrix
Type: m WV Show classes
Stereatype: I—L|

Initial alue: |

Expoart Cantral
" Public " Protected ™ Private O Implementation

Docurnentation:

KinbkicTe pAOKIE Macuea

ak | Cancel | | Er0w337| Help |

Fig. 11.2.32. The n variable and its description

223

Class Attribute Specification for m

General l Detail] ANSI C++]

Mame: m Class: matrix
Type: int »| W Show classes

Stereotype: -

Initial value: |

E=part Contral

" Public " Protected ™ Private © Implementation

Documentation:

KinekicTe cTOBMUMKIE Macked

(] 8 | Cancel |

| Browsze v| Help |

Fig. 11.2.33. The m variable and its description

Now let's create class

methods, describe them, specify

the output type and input variables - see. Fig. 11.2.34 - 11.2.40.

Operation Specification for matrix

R

Tatrix Class: matrix
Return Type: *| W Show classes
Stereolype: -

Semantics] Postconditions] Files] ANSI C+]
General] Detsl | Ewceptions | Preconditions |
Hame:

Expart Caontrol
" Public

Diocumentation:

" Protected Private

" Implementation

K.oHCTpykTop Knaca

Ok

| Cancel | | Browse v|

Help |

Fig. 11.2.34. Class constructor and its description

224

Operation Specification for matrix

Semantics] Postconditions] Files] AMS| C++]
General Detail l E xzeptiohs] Preconditions]
Arguments:

Mame | Type | Drefault |
A float ™

nl ink

ml ink

Fratocal: |

Qualification: |

Size: |

Time: |

Concurency

r & Sequertial " Guarded Synchionous
0K | Cancel | | gmwsev| Help |

Fig. 11.2.35. Input parameters of the overloaded constructor

Operation Specification for opname

Semantics] Paostconditions I Files] ANSI C++]
General l [retail] E xceptions] Preconditions]

Marne: operator+ Class: matrix

Return Tvpe: |matrix [Logical View: = | [Show clazses

Stereotype: -

Export Control
" Public ¢ Protected © Private © |mplementation

Documentation:

MeperpyseHui onepatop "'+ AnA knaca marpuu|

QK I Cancel | Apply | E[DWSEV| Help |

Fig. 11.2.36. Overloaded operator "'+ and its description

225

Operation Specification for opname
Semantics | Postconditions] Files] ANSI CH++]
General Detail l Exceptions] Preconditions]
Arguments:
Mame | Type | Default |
matr Logical YWiew::r
Protacal: |
Qualification: |
Size: |
Tirne: |
Concurency
r " Sequential Guarded (" Spnchronous
Ok | Canicel | Apply | Emwsev| Help |

Fig. 11.2.37. Input parameter of overloaded operator "+

Operation Specification for operator®

Semantics] Postconditions] Files] AMNS| C++]
General l [retail] Exceptions] Freconditions]

Marne: operator” Clazs: matrix

Return Type: |matrix [Logical View: «| W Show clagses

Stereotype: -

Ex=port Contral
& Public ¢ Protected © Private © |mplementation

Documentation:

MeperpyseHyi onepatop ™" 408 K135y MATHPHLE

Ok | Cancel | | Erowsev| Help |

Fig. 11.2.38. Overloaded operator ***' and its description

226

Operation Specification for, det

Semantics] Fostconditions] Files] ANSI CH+]
General l Detail] Exceptions] Preconditions]
Mame: det Clags: matrix

Feturn Tvpe: |float *| ¥ Show classes
Stereatype: -

E=port Contral

* Public © Protected © Private © Implementation

Docurentation:

METon 207 SHAMOAKEHHA BUSHAYHUES MaTPHL]

oK | Cancel | Apply | EIUWSEV| Help |

Fig. 11.2.39. The method of finding the determinant of the matrix
and its description

Operation Specification for obr_matr

Semantics] Postoconditions] Files] ANSI CH+]
General] Detail] Exceptions] Preconditions]

Marme: abr_rnatr Class: matrix
Retun Type: |matrix [Logical View: | W Show classes
Stereotype: -

Export Control
@ Public Protected © Private © Implementation

Documentation:
MeTon ana sHaxkoaMeHHA OSEPHEHO MAaTPU

0K | Cancel | | Erowsev| Help |

Fig. 11.2.40. Method of finding the inverted matrix and its
description

227

We have this class with all the necessary fields and methods -
fig. 11.2.41.

Ei Class Diagram: Logical View / Main

matrix

&massiv : loat >
nint

%m int

‘mamx[)
Soparator+)
Foperatort()
det()
®obr_matr()
Sratri)
matrix])

Fig. 11.2.41. Matrix class with all the required fields and methods

The next step is to generate the code. To do this, first
convert the model - see. Fig. 11.2.42.

%: Rational Rose - mogenn_kn_MATP1.mdl

Fle Edit tiew Format Browss Repert Query Add-lns Window Help
. Creat »
DEd sRE g kom (2 flelasOn

81 veaens_ka MATP1 Model Properties b
Use Case View
Lagical View Options...
Compenent View
Degloyment View
@ Model Propertes

Open Seript...
New Script

Ei| Class Diagram: Logical View / Main
Class Wizard. .

M Open ANSI C-++ Specification
Ada 83 ¥ Browse Headsr .. atrix
Ada 95 | Browse body &massiv: float ™
Reverse Engineer. .. .
CORBA ¥ Generate Code... &m - int
DataModsler #| Class Custormization.., o
matrix{)
Preference: o
BEEDeploy ¥ operator+()
®operator)
Java | 2EE delf)
Orackes » Sobr_matrly
Cmatrixg)
Madel Integrator Cmatrixf)

tweb Publisher.

TOPLirk. .
com 3
visual G+ 3

Version Corkrol ¥

visusl Basic 3

tiveb Modeler 3

WML_DTD v

77 Kna Matpls

Fig. 11.2.42. Model conversion for code generation
228

And now, actually, we generate the code - fig.

Rational Ros

11.2.43.

Fle Edt View Format Browse Report Query i

S0 smE g ROE

Check Model

P8 regene_kn MATPT
+ 3 Use Case View
(3 Logical View Options...
+ 3 Component View

Model Properties +

Open Scriy
Deployment View N:W i f
&3 Modsl Propsities P
Class Wizard, .,
Ada B3 *
#Ada 95 »
COREA »

Data Modeler &
OEE Deploy ¥
Java | 12EE »
Oracles »
Model Tntegrator
Web Publisher..

TOPLink...

Preference:

Add-ins window Help

Ei Class Diagram: Logical View J Main

Open ASL C-++ Specifcation...
Bronse Header...

Browse Budy...

Reverse Engineer...

Class Custamization.

Convert Fram Classic Ceb-+

matix
&massiv: float ™

n - int
&m: int

Ornatrix)
Saperatar+{)
®aperatar()
et
Qabr_rmatr()
matiix()
matrix()

Fig. 11.2.43. Code Generation

The generated code is shown in fig. 11.2.44 and 11.2.45.

B matrix1

@afin Mpaska MopraT Bua Crpaska

BioKHOT,

Knac matpuye
Hétodelld=54C3DF240203
clase matrix

public:
£ KoHeTpykTop kn
Mool B4 COE 01 ADOBE
matrix();

/o delld=54 C3EOGAD3 C
matrix operator+(matrix matrl);

Meperpysenni onepatop ™
/o delld=54 C3EN9E03E9
atris operatart(matrix mate1);

/o delld=54 C3EDFDODSD
float det();

AModel d=54C3E13301E4
matrix obr_matrQ;

KoHeTpykTop knaca

o delld=54C3E35202DE
matrix(float ™ &, int n1, int m1);

KowcTpykrop kn
el COESAT0157
matrix(int n1, int m1);

private

/o delld=54 C3DFB2001F
float = massiv:

#1 KinbkicTs pankis macuea
/o delld=54C3DFBADZDE
int n;

KinekicTe cToBnuvkie macues
/t##odelld=54 C3DFEBOOEE
int m;

Fig. 11.2.44. Matrix class header file
229

#ifndef MATR[1_H_HEADER_INCLUDED_AB3COCER
#define MATRIKT H HEADER_ INCLUDED _AB3COCEB

/# Meperpysxenul onepatop "+' AR KNaca MaTPULE

ANA KNaca MaTtphus

MeToa ANA SHAXOIKEHHA BHIHaNHHKA MaTRML]

/1 MeTog ANA SHAXOMKEHHA 0BEPHEHDI MaTPHL

/1 3MiHHE, W0 ABNAE COBOK ABDEMMIPHHI MACHE

p - BowHor
Wafin Mpagka ®opMaT Bua Crpaeka

#include "matrix1_h"

Ji#indelld=54 C3E01ADDBB
matrix:: matrix()

{
}

Irvodelli=54C3EN3A031C

matrix matrix:: operator+(matrix matrl)
{
}

Igivodelli=54C3E09B0369

matrix matrix::operator{matrix matr1)
{
}

JH#iodelld=54C3EOFDO0SD
float matrixc:det()

{
}

JHviodelld=54C3E13301E4
matrix malrix; obr_matr(

}

I#indelli=54C3EI52020E
matrix: mattix(ioat = A, int n, int m1)

{
}
JH#dodelld=54 C3E3AT0157

matrix::matrix(int n1, int mf)

}

Fig. 11.2.45. The matrix class implementation file

230

Control questions and tasks for part 11.2
1) Actors and Use cases in Rational Rose
2) Use Case diagrams
3) Activities. Activity diagrams
4) Transitions. Elements of choice
5) Synchronization lines. Swimlanes
6) The start and the end states
7) Identify the actors, use cases and actions.
8) Construct use case and actions diagrams.
9) Classes. Class diagrams
10) Associative and aggregation relations
11) Attributes of classes
12) Define classes according to the variant.
13) Define the relations of inheritance, aggregation and
association.
14) Build a class diagram .
15) Generate code in language C ++ for the diagram.
16) In the Rational Rose environment, create a class of
matrices and in it the necessary fields and methods. It is
mandatory to have two overloaded constructors, as well as
methods for adding, multiplying, finding the determinant and
inverting the matrix; in addition, matrix input and output
methods (from a file or from visual components on a form).
Add and multiply methods using overloaded + and *
statements.
17) Generate code in C ++
18) In C ++ Builder, create software that implements all the
classes described, and performs arbitrary actions on matrices.

231

LITERATURE
1. BacunwseB A. IIporpammupoBanue Ha C++ B mpumMepax
H 3aga4ax. M.: Okcmo, 2021. — 368 c.

2. TIpexyn B.U., KopoBkmna H.JI., JleBoukmna TI.A.
[IpoexTupoBanue wuHpOpMAMOHHBIX cucTteM. M.: IOpaiiT,
2017, 386 c.

3. Kgarpanu T. Rational Rose 2000 1 UML. BusyansHoe
moaenupoBanue. — M.: JIMK Ilpecc, 2001. — 176 c.

4. KonnakoB A.U. CAIIP TeXHOTOTHYECKUX MPOIIECCOB. —
M.: U3narenbckuid eHTp «Akagemusi», 2007. — 272 c.

5. Jlesuncon [[x. TectupoBanue [1O ¢ momompro Visual
Studio 2010. - M.: DKOM-ITab6mwumieps, 2012.

6. Jlunmman C., Jlaxoite K., My b. S3mpk
nporpammupoBanus C++. ba3oBelii kypc. - M.. Bunibsmc,
2016. - 1120c.

7. JlutBunenko H. A. TexHoiorusi mporpaMMHpOBaHHUs Ha
C++. — C.-116.: BXB-ITerepOypr, 2010. — 288c.

8. Meitep Jx. JI. Komangnas pa3pabotka ¢
ucnosip3oBanuem Visual Studio Team Foundation Server / JTx.
H.Meitep, k. Teitnop, A. Makman, I1. bancon, K. /xoHC -
W3 n. Kopniopauus Microsoft, 2007.

9. Meitepc C. DddextuBHbiii u coBpemeHnHblii C++. M.:
Bunesamc, 2016. - 304 c.

10. OpnoB C.A. Ilporpammuas uHXeHepus. TexHOIOTHH
pazpabotku mporpamHoro obecmeuenus. — C.-I16.: Tlutep,
2016, 640 c.

11. TIlpara C. S3pik nporpammupoBanus C++ (CH++11).
Jlexuuu n ynpaxHeHnus, 6-¢ n3nanue — M.: Bunbsamc, 2012.
— 1248 c.

12. Pesanoa B.I'., Pe3zanoBa H.M. Ilporpamue
3a0e3neueHHs I JA0CHipKeHHs nojgiMepaux cucrtem // K.:
AptEk. - 2020. 358 c.

13. Crpayctpyn Bb. fA3pik nporpammupoBanus C++. Kparkuit
Kypc. 2-e nznanue. K.: [lnanexkruka, 2019. — 369 c.

232

https://www.ozon.ru/person/344228/
https://www.ozon.ru/person/344229/
https://www.ozon.ru/person/1273570/

14. Crpaycrpyn b. S3pik nporpammupoBanus —C++.
CnenmansHoe m3manne M.: bunom, 2011. —1136¢

15. ToxmakoB [I'.II. CASE-texHONOrun mnpoeKTHPOBAHUS
nH(pOpMaMOHHBIX cucTeM. YbsiHOBCK: Yl TV, 2018. - 224 ¢
16. Ywuctos JI.B. [IpoekTupoBanre HHPOPMAIIMOHHIX CHCTEM.
M.: IOpaiir, 2016, 260 c.

17. ManymoB A.C., Hukumkun C.U., HockoB B.H. Beenenue
B CALS-texnonoruu. Kospos: KI'TA, 2002. — 137c.

18. Mlwnar I'. C++. bazosenii kypc. — M. Jlmanekruka-
Bunbesamc, 2018. — 624 c.

19. [nee M. Qt 5.10. [IpodeccuonansHoe
nporpammupoBanue Ha C++. C.-116.: BXB-IlerepOypr, 2018. —
1074 c.

20. Ilep6annr B.IO., Kpacuurcbkuii C.M., PesanoBa B.I'.
Matremaruuni mozaeni B CAIIP. O6pani po3niau Ta MpUKIAIH
3acrocyBanHda. — Ki:KHVYT/L, 2011. - 219 c.

21. V. Yu. Shcherban’, V.G. Rezanova, T.I.Demkivska
Programming of numerical methods and examples of practical
application // K.: Education of Ukraine, 2021. — 150 p.

22. Stroustrup B. Programming: Principles and Practice Using
C++ (2nd Edition). Addison-Wesley Professional, 2014. —
1312 p.

233

Pe3zanoBa B.I'., lllep6ans B.1O., lemkiBcbka T.1.

TEXHOJIOI'TI PO3POBKHA
IMPOI'PAMHUX NPOJYKTIB

(aHTMACHKOI0 MOBOIO)

Penakrop Pesanosa B.T'.

Jlu3aiiH Ta BepcTKa aBTOPChKi

Dopmar 60*84/16
Tanip odcernnit 80rp/m2. [JIpyk mmdposwuii. I"apritypa Times New Roman
VYMoBH.-apyK. apk. 14.75 OG- Buz. apk. 7.80
3amosnenns Ne 0202-0037
MMigmucano mo npyky 02.02.2022 p.

TOB «Bunaamunii gim «ApTEK»

04050, M. KuiB, Byi. Opis Inbenko, Oyxn. 63
Ten.. 067 440 11 37 ph-artek@ukr.net
www.book-on-demand.com.ua
CBiOITBO PO BHECEHHS CY0’€KTa BUIABHIYOI IPaBU
JIK Ne4779 Bin 15.10.14p.

AmEk

BUJIABHUYHUU JIM
1 9 9 1

234

mailto:artek@ukr.net

