

Ministry of education and science of Ukraine

Kyiv National University of technologies and design

Rezanova V.G., Shcherban V.Yu.,

Demkivska T.I.

 TECHNOLOGIES OF

DEVELOPMENT

SOFTWARE PRODUCTS

Tutorial for students of specialty 122

Computer Science

Recommended by the Academic Council of the Kyiv National University of

Technologies and Design (Protocol № 6 of Janyary, 26, 2022)

Kyiv-2022

 2

УДК 004.42

Recommended by the Academic Council of the Kyiv National University of

Technology and Design for students of computer science and related specialities

(Protocol № 6 of January, 26, 2022)

Authors:

REZANOVA V.G. - Candidate of Technical Sciences, Associate Professor of the Department of
Computer Science, Kyiv National University of Technologies and Design ;

SHCHERBAN V.Yu. – Laureate of the State Prize of Ukraine in the field of science and

technology, professor, Doctor of Technical Sciences, Professor of the Department of Computer
Science, Kyiv National University of Technologies and Design;

DEMKIVSKA T.I. - Candidate of Technical Sciences, Associate Professor of the Department of

Computer Science, Kyiv National University of Technologies and Design

Reviewers:

OPANASENKO V, M. - Laureate of the State Prize of Ukraine in the field of science and
technology, Doctor of Technical Sciences, Professor, Leading Researcher of the Institute of

Cybernetics of the National Academy of Sciences of Ukraine;

KRASNITSKY S.M. - Doctor of Physical and Mathematical Sciences, Professor, Kyiv National
University of Technology and Design

Rezanova V.G., Shcherban V.Yu., Demkivska T.I. Тechnologies of development

software products. Tutorial for students of specialty 122 Computer science. – К.:

Видавничий дім «Артек», 2022. – 234 с.

ISBN 978-617-8043-33-9

 The tutorial outlines the approaches and methodology of designing complex objects and

systems; principles of construction and operation of CAD; models of design objects; modern

software development methodologies; software life cycle, methods, languages and standards of
information support of software products at different stages of their life cycle; structural

methodology of information systems development; methods of verification and testing of

programs and systems; methods for assessing the quality of software products, software
development technologies, CASE tools; features of modern large-scale information systems

projects. The textbook is fully consistent with the program of the discipline " technologies of

development software products " and in addition to theoretical information contains a guide to
work in special software packages with examples of practical problems.

 The tutorial is intended for for students of computer science and related specialities

ISBN 978-617-8043-33-9 УДК 004.42

 © В.Г.Резанова, 2022

 © Вид. дім «Артек», 2022

 3

CONTENT

Introduction…………………………………………….

5

PART I

I.1. Basic concepts and methodology for designing

complex objects and systems …………………………

7

I.2. System (structural) level of computer design objects

15

I.3. Principles of construction and operation of CAD…

24

I.4. Mathematical support for computer design ………

29

I.5. Experimental mathematical models of design objects

35

I.6. Theoretical mathematical models of design objects

52

I.7. Integrated automated design systems. Design and

product life cycle management systems…………………

59

I.8. CASE – technologies of computer design ………….

74

I.9. Software development methodologies (RUP, MSF,

XP, DSDM, RAD)………………………………………

87

I.10. Methods of verification and testing of programs

and systems ……………………………………………

105

I.11. Models of quality and reliability in software

engineering…………………………………………….

119

I.12. Assembly, documentation and maintenance of

software……………………………………………….

137

PART II

II.1. Practical methods of work in Microsoft Project

environment……………………………………………..

146

II.1.1. Creating and planning a project in Microsoft

Project……………………………………………….

146

II.1.2. Risk management in Microsoft Project………

158

 4

II.1.3. Visual reports in MS Project………………..

177

Control questions and tasks for part II.1……………….

186

II.2. Practical methods of work in Rational Rose

environment…………………………………………….

187

II.2.1. Visual modeling of information systems. use

case and actions diagrams in the design system

Rational Rose……………………………………….

187

II.2.2. Development of class diagram as a model

of real object……………………………………….

197

II.1.3. Software for class diagram implementation….

220

Сontrol questions and tasks for part II.2……………….

231

LITERATURE…………………………………………

233

 5

INTRODUCTION

Humanity entered the age of informatization, as you

can see in the following: information and information resources

on the global market are becoming the most important high-

tech product; firms, that develop automated information

technology, stand at leading positions in the world economy,

determine further development of competitive product

development; it is impossible to create high technologies

without informatization; information technologies (IT) open

up new opportunities in increasing the efficiency of production

process in the field of education and life, provide a

management of group projects, Internet technologies, CALS-

technologies, distance education etc.; informatization of society

leads to internationalization of production.

An indicator of the scientific and technological power

of the country is the foreign trade balance of professional

knowledge, which is realized by the market of licenses of

production processes, know-how and consultations on the

application of science-intensive products. For example: USA

handles about 80% of innovations to affiliated companies in

other countries. As long as these companies master the

proposed technology, the USA is preparing new ones, which

means that the advanced technological cycle of a highly

developed country is being implemented. Among the most

important components of the power of information of the USA

is the global leadership in the development, production and use

of information technology.

This way the evolution of the world market benefits the

country itself, which creates and transfers high-tech products to

other countries. Other countries should include new

technologies and modern professional knowledge. That is why

in the information society information, knowledge, creativity

become a strategic resource. Through distance learning,

 6

computer games, computer video and other IT, computer

technology has a tremendous impact on the formation of

conditions and environments in which talent develops and

thrives. It is assumed that the social impact of the information

revolution will consist in the synthesis of Western and Oriental

thought.

 In connection with the above, there is a need for

specialists who have the ability to apply the theoretical and

practical foundations of methodology and modeling technology

to study the characteristics and behavior of complex objects

and systems; ability to apply methodologies, technologies and

tools to manage the life cycle processes of information and

software systems and information technology products in

accordance with customer requirements.

 7

PART I

 I.1. BASIC CONCEPTS AND METHODOLOGY FOR

DESIGNING COMPLEX OBJECTS AND SYSTEMS

 Informational technologies - a new area of knowledge

Information technology plays a significant strategic

role in the development of each country. Their significance is

rapidly increasing due to the fact that IT:

- activates and increases the efficiency of the use of

information resources, provides saving of raw materials,

energy, minerals, materials and equipment, human resources,

social time;

- realizes the most important important and intellectual

functions of social processes; occupies a central place in the

process of intellectualization of society, in the development of

the educational system, culture, new forms of art (displayed on

the screen), the popularization of world culture masterpieces

and the history of human development;

- provides informational interaction among people,

promotes the dissemination of mass information;

- quickly assimilated by the culture of society,

eliminating many social, domestic and industrial problems,

expanding domestic and international economic and cultural

ties, affecting the migration of the population on the planet;

- optimizes and automates information processes during

the formation of the information society;

- plays a key role in the processes of obtaining,

accumulation, dissemination of new knowledge in three

directions.

The first one is an information modeling that allows for

a "computational experiment" even in conditions that are

impossible for a natural experiment because of the danger,

complexity and high cost. she second direction is based on

methods of artificial intelligence. It allows you to find solutions

to poorly formalized tasks, tasks with incomplete information

 8

and incorrect outcomes by applying an analogy with the

creation of metaprocesses used by the human brain. The third

direction is based on the methods of cognitive graphics, that is,

a set of techniques and methods of imaginary representation of

the conditions of the problem, which allow you to immediately

see the solution or get a clue for finding it. It opens up the

possibilities for a person to learn about himself, the principles

of functioning of his consciousness. In addition, in this case it

becomes possible to implement the methods of information

modeling of global processes, which provides the ability to

predict many natural situations in regions of increased social

and political tensions, environmental disasters, major man-

made accidents.

 General definitions

Terminology in the field of IT is annually with new

concepts, abbreviations etc., that's why only the definitions of

the general nature is given in this section.

The very term information comes from the Latin word,

meaning "clarification, informing, presentation". The concept

of "information" is widely used in the ordinary life of a modern

person, so everyone has an intuitive idea of what it is. But

when science begins to apply well-known concepts, it clarifies

them, restricts the use of the term strictly within its scope in a

particular scientific field. Thus, the concept of information in

each of them is specified and enriched, becoming the subject of

study of many sciences.

The concept of information is one of the primary

concepts in modern science. The importance of information in

the life of society is rapidly increasing, the methods of working

with information are changing, the scope of application of new

information technologies is expanding.

The complexity of the phenomenon of information, its

versatility, the breadth of its scope and rapid development are

reflected in the constant emergence of new interpretations of

 9

the concepts of information and information technology.

Therefore, there are various definitions of the concept of

information, from the most general, philosophical -

"Information is a reflection of the real world" - to the narrow,

practical - "Information is all information that is the object of

storage, transmission and transformation". Let's show some

other definitions and characteristics for comparison.

Information is one of the fundamental entities of the world

around us. Information is the knowledge, transmitted by some

people to other people in oral, written or some other way.

Information is one of the main universal properties of

matter.

When talking about information, it is important to

understand not the objects and processes themselves, but their

reflection in the form of numbers, formulas, descriptions,

drawings, symbols, images. The information itself can be

attributed to the field of abstract categories, such as

mathematical formulas although a working process is always

associated with the use of any materials and energy costs. The

information is stored as the rock paintings of ancient people in

stone, in the texts of books on paper, in paintings on canvas, in

musical tape recordings on a magnetic tape, in the data of the

computer's memory, in the inherited DNA code of every living

cell, in the human memory inside the brain etc. In order to

record, store, process, distribute one of the materials is required

(stone, paper, canvas, magnetic tape, electronic data carriers).

In addition, energy is needed, for example, in order to operate

printers, to create an artificial climate for the preservation of

masterpieces of fine art, to nourish electricity circuitry, to

support the work of transmitters on radio and television

stations.

The term informatization can be deciphered as an

effective use of information and computer technology in all

spheres of activity as a set of measures aimed at ensuring the

 10

full and timely use of reliable knowledge in all socially

significant forms of human activity. by the public. The main

purpose of informatization is providing a solution to the actual

problems of society, satisfaction of demands for information

products and services.

The term technology comes from the Greek teche +

logos, meaning "skills + teachings". In the manufacturing

process, technology is understood as the system of

interconnected methods of processing materials and methods of

manufacturing products. In general, technology is the rules of

actions of using any means that are common to an entire set of

tasks or task situations. The purpose of technology in industrial

production is to improve the quality of products, reduce the

timing of its production and reduce the cost.The production of

information is aimed at the expedient use of information

resources and their supply to all elements of the organizational

structure and implemented through the creation of an

information system.

Information technology is a set of forms, methods and

means of automation of information activities in various

spheres.

IT, as a study, includes methodical and methodological

provisions, organizational settings, methods of using

instrumental and technical means, etc. All that regulates and

supports the information production and activities of people

involved in this production.

The transformation of new scientific knowledge into a

specific information technology is the main task of the IT as a

study. Let's look at the subject of discussion and state some of

the concepts:

IT is a set of scientific methods and techniques for the

production of information products and services with the use of

the entire variety of computing and communications;

 11

IT is a bordering region that covers both computational

technology and specific social information practices,

rationalizes them at the expense of the widespread use of

computer technology;

IT is a set of fundamentally new tools and methods that

provide creation, processing, transmission, display and storage

of information.

Information technology provides a transition from

routine to industrial methods and working tools with

information in various areas of human activity, allowing them

to use it rationally and effectively.

There are three levels of information technology

review:

the first level is theoretical. The main task is a creation

of a complex of interrelated models of information processes,

being parametric and criterion compatible;

second level is research. The main task is the

development of methods that allow to automate the design of

optimal concrete information technology;

third level is applicational.

Automated information technologies are aimed at

increasing the degree of automation of all information

operations and, consequently, to accelerate the scientific and

technological progress of society.

 Information systems

The term "information system" (IC) emerged alongside

with the widespread use of new information technologies.

The information system carries out a collection,

transmission and processing of information about the object;

supplies employees of different levels of information for the

implementation of the management function.

Information technology is based on the implementation

of information processes. Their diversity requires the allocation

of basic, typical of any information technology. The basic

 12

technological process is based on the application of standard

models and tools. Some of the basic technological processes

are:

- receiving information;

- transportation of information;

- information processing;

- information storing;

- representation and use of information.

The process of obtaining information is related to the

transition from the real representation of the subject domain to

its description in a formal way and in the form of data

representing this presentation.

 In the process of transportation, the distance

information is transmitted in order to make the exchange faster

and organize a quick access to it, using different ways of

transformation.

The process of information processing is used for

obtaining some "information objects" from other "information

objects" by performing some algorithms; it is one of the main

operations while operating with information, and is a major

factor in increasing its scope and diversity.

Information storing process involves the need for

accumulation and long-term data storage, ensuring their

relevance, value, security, availability.

The process of representation and use of information

is aimed at solving the problem of access to information in a

user friendly form.

Basic information technologies are built around the

basis of basic technological operations, in addition including a

number of specific models and tools. This type of technology is

focused on solving a certain class of tasks and is used in

specific technologies as a separate component. Among them

are:

- multimedia technologies;

 13

- geoinformation technologies;

- information security technologies;

- CASE-technologies;

- telecommunication technologies;

- CALS-technologies;

- artificial intelligence technologies .

The specifics of a particular subject area are reflected in

specialized information technologies, for instance,

organizational management, technology process management,

automated design, studying, and others. Among them the most

progressive are the following information technologies:

- organizational management (corporate information

technologies);

- in industry and economics;

- in education;

- automated design.

CASE-technologies (Computer Aided Software

Engineering) is a kind of "technological snap" that allows for

automated design of information technology. Information tools

provide an effective representation of the subject area; these

include information models, classification and coding systems

(all-Ukrainian, areal), etc. Mathematical tools include models

for solving functional problems and the model of organization

of information processes that provide effective decision-

making. Mathematical tools are automatically converted into

algorithms that ensure their implementation. Technical and

software tools set the level of information technology

implementation both during their creation and implementation.

CALS- technology is designed to unify and standardize

the specifications of industrial products at all stages of its life

cycle.

This way, specific information technology is

determined by the compilation and synthesis of basic

technological operations, "branch technologies" and means of

 14

implementation. The implementation of information systems

improves the efficiency of production and economic activity of

the enterprise due to not only the processing and preservation

of information, automation of routine work, but also

fundamentally new methods of management. They are based

on designing the actions of specialists during their decision-

making process (methods of artificial intelligence, expert

systems, etc.), using modern telecommunication facilities (e-

mail, teleconferencing), global and local computer networks,

etc.

Information systems are classified in the area of

application as follows:

- С scientific research;

- ІС automated design;

- ІС organizational management.

 Information technology of product design

The need of implementation of IT for product

manufacturing can be explained by the requirements for

reducing the design and preparation time for the production of

new and upgraded products, the cost of design and production,

the cost of long-term after-sales service . Besides, IT is

required for the restructuring (re-engineering) of enterprises in

accordance with modern requirements for improving the

quality and competitiveness of products, restoring old markets

and entering new markets. The following IT are widely used at

the stages of the life cycle of electronic tools:

- CASE (Computer-Aided Software / System

Engineering) - technologies,

- ERP (Enterprise Resource Planning), which provide a

solution to a wide range of tasks of resource planning and

management of enterprises.

- CRM (Customer Relationship Management) systems

as a set of applications or as an add-on over ERP. In CRM-

systems, the emphasis is on the relationship between the "client

 15

company" and, above all, the maintenance of old customers by

taking into account their individual needs and characteristics.

I.2. SYSTEM (STRUCTURAL) LEVEL OF COMPUTER

DESIGN OBJECTS

 The essence of the design process

The essence of the design process of products is to

design constructions and technological processes for the

production of new tools, which, with minimal cost and

maximum performance efficiency of the functions assigned to

them in the necessary conditions.

Designing any technological object means creating,

transforming and presenting in an accepted form of the image

of this not yet existing object.

The image of an object or its component parts can be

created in the imagination of a person as a result of the creative

process or generated in accordance with certain algorithms in

the process of interaction between man and computer. In any

case, engineering designing begins with the expressed need of

society in some technical objects.

Designing includes the development of a technical

proposal and/or a technical task (TT) that reflects these needs

and the implementation of the TT in the form of project

documentation. Typically TT is presented in the form of some

documents, and it is the initial (primary) description of the

object. Generally, The result of the design is a complete set of

documentation, which contains sufficient information for the

manufacture of the object in the specified conditions. This

documentation is actually a project, or rather a definitive

description of the object.

So, designing is the process of obtaining and

transforming the initial description of an object into a final

description based on the implementation of a complex of

research, design and design works.

 16

Designing of complex objects is based on the

application of ideas and principles set out in a number of

theories and approaches. The most general approach is a

systematic approach, the ideas of which are imbued with

different methods of designing of complex systems.

Projected products distinguish the following design

tasks by the degree of novelty:

- partial modernization of the existing product (change

of its parameters, structure and design), which provides a

relatively small (several dozens of percents) improvement of

one or more quality indicators for the optimal solution of the

same or new tasks;

- significant upgrade, which provides significant

improvement (by several times) of quality indicators;

- the creation of new products based on new principles

of operation, design and production for a sharp increase (on a

few levels) of quality indicators in solving the same or

substantially new tasks.

Designing is a complex multi-stage process in which

large teams of specialists, entire institutions and research and

production associations, as well as the organization of

customers who are to operate the developed equipment, can

participate.

The design stages consist of separate design

procedures, which end with a partial design decision. The

analysis and synthesis of descriptions of different levels and

aspects is typical for designing procedures.

The idea behind the analysis procedure is in

determining the properties of a given (or selected) description.

The analysis allows to assess the degree of satisfaction of the

project solution with the given requirements and its suitability.

The idea behind the synthesis procedure is in creating a

design solution (description) according to the given

requirements, properties and restrictions.

 17

Analysis and synthesis procedures in the design process

are closely related, since both of them are aimed at creating an

acceptable or optimal design solution.

A typical design procedure is optimization, which

leads to an optimal (according to a certain criterion) design

decision. Optimization provides a creation (synthesis) of the

design decision, but includes a stage by stage evaluation of the

characteristics (analysis).

Project procedures consist of separate project

operations. Project procedures and operations are performed in

a certain sequence, called the design route. Design paths can

begin with lower hierarchical levels of descriptions (ascending

design) or from the upper (downward design).

There is a deep interconnection between all stages of

the design. Thus, the definition of the final design and

development of the entire technical documentation can often

not be completed before the end of the development of

technology. A correction of the principal schemes, structure of

the system and even output data may be required in the process

of technology designing and development. Therefore, the

design process is not only multi-stage, but is also repeatedly

corrected as it performs, which means that the design is

iterative.

Modern design is based on the systematic approach and

the improvement of design processes with the use of

mathematical methods andcomputers, complex automation of

labor-intensive and routine design work, the replacement of

layout and model simulation by mathematical modeling, the

use of effective methods of multivariate design and

optimization, as well as improving the quality of design

management.

 18

 Methodology of a systematic approach to the task of

the design of complex systems

The system approach allows finding the optimal, in

the broadest sense, solution of the design task due to the

comprehensive, holistic consideration of both the projected

product and the design process itself, and can lead to genuinely

creative innovative solutions, including large inventions and

scientific discoveries.

The main means of automation of design are the ECD

(electronic counting devices) and other technical devices, that

create the necessary basis for the full realization of the

potential opportunities of the system approach. The system

approach is becoming more widespread in designing and

managing.

The point of the system approach is that the object of

design or management is seen as a system, that is, as a unity of

interconnected elements that combine into a single thing and

operate in the interests of realizing a single goal. The system

approach requires examining each element of the system in the

relationship and interdependency with other elements,

revealing the patterns inherent in this particular system,

identifying the optimal mode of its operation.

A systematic tool for implementing a systematic

approach to the study, design or management of a complex

process is called system analysis, which means a collection of

techniques and methods of studying objects (processes) by

presenting them in the form of systems and their further

analysis.

The design process is a multi-layered hierarchical

process for optimizing solutions in each layer from the point of

view of the a system approach to design automation. The

principle of hierarchy in design and management, as well as the

principle of integrity, necessitate the construction of a system

of criteria when partial criteria are used to solve problems of

 19

the lower level of management (subsystems), logically match

with the criteria used at a higher hierarchical level. The source

values are compared in the process of designing and managing,

that is, the result of the system's functioning with the criterion.

Thus, the system is a rather complex object, which can

be disassembled into constituent elements or subsystems.

Elements are informationally related to each other and to the

environment surrounding the object. A set of relationships

forms the structure of the system. The system has an

algorithm for functioning, aimed at achieving a certain goal.

 System approach to the task of automated design of a

technological process

During analysis of complex processes, when it is not

possible to find internal connections in the system, the

principle known in the cybernetics a the "black box" is used.

This idea lies in the fact that, without having information about

the being, about the internal structure of the process, only the

dependence of the output variables from the inputs are used for

its mathematical description.

The concept of a "black box" refers to the basic

concepts of cybernetics, helping in the study of the behavior of

systems, that is, reactions to various external influences,

abstract from their internal order. Many systems, especially

large ones, are so complex that even with full information on

the state of their elements, it is virtually impossible to link it

with the behavior of the system as a whole. In these cases, the

presentation of such a complex system in the form of some

"black box", functioning in the same way, makes the

construction of a simplified model easier.

Analyzing the behavior of the model and comparing it

with the behavior of the system, a number of conclusions about

the properties of the system itself can be made. When they

coincide with the properties of the model,working hypothesis

 20

about the predicted structure of the researched system can be

made.

Let's assume, that the input of the system can be

influenced by X, and the output indicators have a P quality.

Looking at the behavior of this system for a long time and, if

necessary, performing some active experiments on it, that is,

changing the input in some way, a certain level of knowledge

of the properties of system can be achieved, in order to be able

to predict a change in its initial output values for any given

change in the input. The method that uses the "black box" is

widely used to solve the problems of modeling controlled

systems (especially in the study of complex technical objects)

in cases where the behavior of the system rather than its

structure is of interest. Statistical methods of optimization are

usually the most suitable in these situations, since neither the

technologist, nor the ECD are capable of taking into account

the total effect of many different factors, often associated with

complex dependencies, in a number of cases.

The methodology of system analysis is quite universal

and can be used both for the design process as a whole, and for

individual phases and stages of designing. During the

transition of general design, the content of goals, and decisions

will change on certain stages, but the overall sequence of

analysis stages will remain.

Traditionally, the design of complex technical systems

is divided into following phases or stages of development:

- technical task for the designed object;

- scientific research work;

- sketch design;

- technical design;

- working design;

- technology of manufacturing and testing of the

designed object (prototype or batch);

- making corrections (if necessary).

 21

Technical task. At the stage of development of the

technical task (TT) the following tasks are solved: the search

and selection of the necessary scientific and technical

information (about prototypes, patent data, etc.) from the

corresponding database.

The new scheme (device) can either have or not have

analogues. In the case if analogues exist, you can proceed to

the design stage of the device (system). But, as a rule, there is

no analogue or the developed system has to exceed the known

analogue, therefore a SRW (scientific research work) is

required; an analysis of the selected information and

formulation of technical requirements for the projected object

is formulated on its basis. At this stage, information search and

document processing operations can be automated. Certain

parts of the auxiliary actions of information analysis can be

automated as well, for example, grouping them according to

certain features, selecting the least or most compatible with

each other options etc. In addition, some questions are solved

and made up in specific documents, for example: the transfer

of functions performed by the device; development of the

structural scheme of the device; definition of the characteristics

of individual nodes; development of algorithms of executed

operations.

SR stage. This is a pr-design stage. This is one of the

most important stages. In order to solve the tasks at this stage, a

usage of ECD is required. These are the so-called automated

systems of scientific research (ASSR). At the stage of SRW,

the following tasks need to be solved: formulation of the

criteria of quality and management; management of scientific

experimentation; carrying out a passive or (and) active

experiment with the processing of their results; development of

mathematical models and their identification by experimental

data; working out the technological processes of manufacturing

of objects in order to find norms for parameters that provide

 22

optimal output quality indicators; the formation of a

generalized quality criterion, which includes all the partial

quality indicators. A generalized criterion is than taken as the

target function while solving the optimization problems;

solving the optimization problems. The variation of the input

and control parameters of the technological process in the

framework of the established norms (accesses) is carried out in

order to obtain the optimal quality criterion; a search for a

fundamental possibility of building a system; a development of

new technical means, including means of control and

measurement.

A Technical Proposal (TP) is issued as a result of a

SRW. CAD programs, methods and algorithms can b applied,

even though the SRW is an independent stage.

Stage of sketch design. The following tasks are being

solved at this stage: a sketch of a projected system (device)

with a detailed development of its capabilities is developed, a

search and selection of more detailed information is being

carried out. Based on the analysis of the received information,

the preliminary design decisions are taken and the first project

documents are prepared. Various calculations are produced for

the development of design documents, the content, the volume

and complexity of which depend on the characteristics of the

object being projected.

The works of this stage are mostly being automated,

and their automation gives the greatest technical and economic

effect by optimizing design decisions. The automation of these

works is achieved through the application of optimization

mathematical methods.

Stage of the development of the object of the technical

project. At this stage, the decisions, made in the sketch design ,

are being detailed and clarified, and the new more precise

project documents are created. A search, selection and the

analysis of the output information (mainly technical and

 23

techno-economical) is carried out once again. Numeric

calculations are carried out as well, but from other, more

accurate methods. These works can be largely automated. Most

of the documents formed at the stages of sketch and technical

design are used only for working design and are not included in

the working and operational documentation. The information

generated in the considered stages serves as the source for the

working design. This means that it is expedient to create banks

of temporary information based on the projected object in the

conditions of automated design.

Working design. At the stage of working design, the

main type of work to be done is the arrangement of design

solutions in the form of drawings, specifications for them and

operational documentation for the object. Modern means of

computer technology allow to fully automate the execution of

drawings and specifications, and to a certain extent - the

formation of operational documentation. If the design

automation system carries out not only the production project

but also the design of the technology, then it is advisable not to

make drawings and specifications in the traditional form, but to

transfer information to the designers-technologists on the

computer carriers as a database of the projected object.

Designing technologies for manufacturing of a

designed object. At this stage, traditionally, a work in the

process of technological preparation of manufacturing of a

product or its components and parts is performed at the

enterprise-manufacturer. When designing the technology, the

following tasks are carried-out: search and selection of and

output information (about the object to be manufactured; about

the technological equipment of the enterprise; about the

technological and labor standards); analysis and processing of

data in order to determine the processing routes, the sequence

of technological operations and their modes of operation, the

needs of the instrument and measuring equipment, the creation

 24

of a special tool; arrangement of the corresponding

technological documentation.

The works referred to in the Technical Task and

Technical Project are identical to many operations during the

design of the product. The peculiar design of technologies

requires original calculations and solutions for various types of

technological operations. Nevertheless, the methods of

formalizing most of these works exist, therefore, they can be

automated.

Automation of information processing of operations

and the management of processes of information usage at

all reviewed stages of designing is the actual point of the

functioning of modern CAD.

 I.3. PRINCIPLES OF CONSTRUCTION AND

FUNCTIONING OF CAD

Principles of functioning CAD

When creating and operating CAD using the following

principles:

1. The principle of system unity is that, when creating,

functioning and developing CAD, connections between

subsystems must ensure the integrity of the system.

2. The principle of inclusion ensures the development

of CAD on the basis of requirements that enable this CAD in a

higher-level CAD.

3. The principle of development means that CAD

should be created andfunction with the additions, upgrades and

updates of subsystems and components.

4. The principle of complexity ensures the

interconnection between the design of elements and the entire

object at all stages and stages of design.

5. The principle of informational unity is the use in

the subsystems, facilities and components of the CAD system

of uniform conditional notations, terms, symbols, problem-

 25

oriented languages, methods of making information

conforming to accepted normative documents.

6. The principle of compatibility is that the

simultaneous operation of all subsystems of CAD should be

ensured while maintaining the openness of the system as a

whole.

7. The principle of standardization and inventory is

to unify, standardize the subsystems and components that are

invariant to the industries and objects being designed.

8. The principle of the dialogue is that there is

simultaneous use by the designer of manual, automated and

automatic project operations, its active influence in the process

of design solutions.

9. The principle of accumulation of design

experience is the availability and replenishment of the archive

of design procedures and design decisions, mathematical

models (MM), algorithms, theoretical and experimental data,

etc.

Composition and structure of CAD

Structural components of CAD, which are strictly

related to the organizational structure of the project

organization, are subsystems, in which, with the help of

specialized complexes of the means, the functionally

completed sequence of CAD tasks is solved.

CAD are devided to:

Designing subsystems that have object orientation and

implement a separate stage (design stage) or group of directly

related project tasks. Example: sketch design of products,

design of body parts, etc.

Servicing subsystems have a common system use and

provide support for the functioning of the designing

subsystems, as well as the design, transmission and output of

the results obtained therein. Example: automated data bank,

documentation subsystem, and graphical input / output.

 26

The subsystem consists of components of CAD,

combined by a target function common to this subsystem, and

which ensure the functioning of this system.

A component is an element of support that performs a

separate function in the subsystem:

Methodical support - documents in which the

composition, the rules for the selection and operation of design

automation facilities are displayed.

Linguistic support - design languages, terminology;

Mathematical support - methods, mathematical

models, algorithms;

Software - documents with text programs, programs on

carriers and operational documents;

Technical support - means of computing and

organizational engineering, data transmission, measuring and

other devices;

Information support - documents describing standard

project procedures, typical decisions, typical elements, etc .;

Organizational support - provisions, instructions,

orders, staff schedules and other documents that regulate the

organizational structure of CAD divisions.

 General characteristics, definition of Technical

support of CAD

Technical support of CAD is a complex of technical

means , on the basis of which the entire automated design

process is physically implemented: from input and preparation

of output data to obtaining the finished project documentation.

In essence, technical support of CAD is the material

basis of automated design and, together with the software

(CAD software) creates the physical environment in which the

other types of CAD support (mathematical, informational,

linguistic, etc.) are implemented.

It should be noted that the problem of selecting

technical support of CAD for any particular CAD is a very

 27

important and responsible step in the design or operation of this

CAD. This is due to the fact that the technical support of CAD

with software CAD is the most expensive component of CAD

and largely determines the effectiveness of the whole system as

a whole.

Requirements for technical support of CAD

Requirements for technical support of CAD can be

divided into four categories: system; functional; technical;

organizational and operational.

System requirements determine the spectrum of

properties, parameters and characteristics of the technical

support of CAD as a technical system. System requirements for

technical support are following: efficiency, universality,

compatibility, flexibility and openness, reliability, accuracy

(reliability), security, the possibility of simultaneous operation

of a sufficiently wide range of users, low cost.

Functional requirements determine the properties of

the technical support of CAD in terms of performance CAD

functions. They are nominated for CAD and should provide:

implementation of mathematical models; tasks of decision

making and design procedures; archives, libraries of design

decisions and typical elements; data retrieval system, providing

visual information; work with graphic images and models;

parallel development of individual nodes; interconnection of

stages of designing; work of the user both in batch mode and in

dialog mode with the ability to switch from one mode to

another at any stage of designing; documentation of design

results; delivery of results to technological equipment

(recording of the program for equipment, etc.).

The technical requirements determine the parameters

and characteristics of the technical support of CAD and

individual technical support in the functioning of CAD and

expressed in the form of quantitative, qualitative and

nomenclature values of characteristics and parameters. The

 28

main characteristics and parameters include the following:

performance, speed of devices, information coding system;

capacity of storage devices, types of data carriers; Types of

interfaces for hardware connectivity.

Organizational-operational requirements include

technical aesthetics, ergonomics, safety (labor protection),

organization of operation and maintenance of the CAD system.

The most general requirements (mostly systemic and

functional) lead to TP on CAD. More detailed and specified

system and functional requirements, as well as technical and

organizational-operational requirements, indicate the technical

problems of complex facilities.

The main components of technical support of CAD

Currently, in the technical support of CAD, it was

decided to allocate two groups of technical means (fig. I.3.1):

 Fig. I.3.1.The main components of technical support of CAD

 29

- technical means of general purpose, intended for

creation CAD of different classes and configurations and the

complexing of specialized technical means type of ARM, IRS

and others;

- problem-oriented complexes of technical means with

specialized software: ARM-automated workplace; IRS-

engineering workstation; RMP - work place of the designer.

I.4. MATHEMATICAL SUPPORT FOR COMPUTER

DESIGN

General characteristics

 The mathematical support of automated design is called

the combination of mathematical models of design objects, as

well as methods and algorithms of operations and procedures.

 The generalized structure of the MS CAD can be shown

in the following form (See Fig.). As can be seen from this

scheme, the whole set of mathematical models of objects,

which are projected by the nature of their properties, are

divided into functional and structural models.

 Functional models are intended for the display of

physical processes occurring in the object during its operation

and establish connections between input, output, control and

external parameters by means of functional dependencies,

functionals, operators, probable dependencies, etc. Functional

mathematical models (MM) together with some criteria for

assessing the quality of the object's operation form the basis of

a functional description of the design object (functional

aspect).

 Structural MM are designed to reflect the structural

properties of the design object. Distinguish structural MM:

topological and geometric.

 Topological MM cover the composition and connection

of elements of the design object. They are most often used to

describe objects that consist of a large number of individual

 30

elements when solving tasks of attachment of constructive

elements to certain spatial positions (example of the problem:

layout, tracing of connections), or to relative moments of time

(for example - in the development of technological processes).

Topological models can take the form of graphs, tables, lists,

matrices, etc.

 Geometric MM reflect spatial relationships and forms

of the projected object and its component parts. Geometric

MMs can be expressed by a set of equations of lines and

surfaces, graphs and lists, etc. On the basis of topological and

geometric MM are morphologicappointment of the design

object.

 he effectiveness of CAD, in many respects, is

determined by the quality of mathematical support, since the

choice of MS often determines the quality and design terms, as

well as costs for it.

Generalized structure of mathematical support of CAD

 Generalized structure of mathematical support of CAD

is shown on the figure I.4.1.

The requirements for accuracy, reliability, economy,

versatility and adequacy are put forward to the MM.

1. Accuracy: estimated by the degree of coincidence of

real and estimated parameters of the object. The evaluation is

carried out using data MM and algorithm. Let the quality of the

design object displayed in MM are estimated by the vector of

output parameters Y = (y1, y2, ... , ym). Then, knowing the

actual and calculated using the MM value of the j-th output

parameter through Yjv and Yjmod , respectively, define the

relative error Еj of the calculation of the parameter Yj as

Еj = (Yj mod - Yj v) / Yj v.

The estimate  = (1, 2, ... m) is obtained. If necessary,

the reduction of this estimate to the scalar use of any norm of

the vector  , for example

м =   = max j . (6.2) j1: m

 31

Fig. I.4.1.Generalized structure of mathematical support of

CAD

2. Reliability: it is necessary to use such MM and

algorithms which have strict justification of use.

3. Efficiency of MM is characterized by the cost of

computing resources (by the cost of machine time T and memory

M) for its implementation. The less T and M, the more

economical the model. Instead of the values of T and M, which

depend not only on the properties of the model but also on the

characteristics of the computer, you can use other values: the

average number of operations that are performed in one call to the

model, the dimension of the control system, the number of

internal parameters that are used in the model.

4. Versatility: involves the use of objects of the same type

without significant alteration of MM and algorithms.

 32

5. Adequacy of the MM is the ability of the MM to

display properties with an error that would not be greater than the

given one. Since the output parameters are functions of the

vectors of the parameters of the external Q and internal X, the

error J depends on the values of Q and X. As a rule, the internal

values of the MM are determined from the condition of

minimizing the error J in some point Qn of the space of external

variables, while using the model calculated vector X with various

values of Q. Adequacy of a model, as a rule, takes place only in a

limited field of change of external variables-area of adequacy

(VAA) of a mathematical model:

ОА =Q  М  ,

where   0 - the given constant is equal to the

maximum permissible error of the model.

Functional description of design objects

Functional models of the design object or its elements

are dependencies that connect the output characteristics with

the input, internal (controllers) and external parameters. In the

general case, functional models are written in the form of a

ratioY = F(t, s, x, Q),

where Y = (y1, y2, y3, ... yn) - vector of output

parameters;

X = (x1, x2, x3, ... xn) - vector of internal (controlled)

parameters;

Q = (q1, q2, q3, ... qn) - vector of external parameters;

t - time;

S = (x, y, z) - vector of spatial coordinates.

The construction of a functional MM object is possible

in the case when the morphological description of the design

object is already executed, that is, the description of the

composition of its elements and their interaction.

Classification of functional models

1. Depending on the method of construction: -

theoretical;

 33

- Experimental.

2. In the form of links between the parameters of the

model: - analytical;

- algorithmic.

3. Depending on the consideration of random factors:

- deterministic;

- scholastic.

4. Depending on the type of given parameters of the

model: - constant;

 discrete

5. Depending on the features (type) of the equations

included in the model: - linear; nonlinear

6. Depending oncounting or not taking into account

time: - static; -dynamic

7. In relation to the hierarchical level: - micro-models; -

macromodels; - metamodels.

Kinds of functional models

 1. Mathematical models in the form of differential

equations in partial

derivatives (distributed models). Such models reflect processes

that

proceed in the general case in 3-dimensional space and in time

they are

have the following look:

Ф(S, X, Y, Q,  S, 
2
Y S

2
, ... , t) = 0,

where Ф- communication operator between variables and their

derivatives. Examples of Distributed Models:

- thermal equation for simulation of the thermal mode

of the engine of internal combustion;

- diffusion equation for simulation of cooling processes;

- the equilibrium equation, when simulating tasks of

statics and dynamics of machines.

2. Mathematical models in the form of ordinary

differential equations (concentrated models).

 34

( t, X, Y, Q, t) = 0.

Examples of concentrated models:

Differential equation of the curved axis of the beam on

an elastic basis during the mo-division of the stressed-

deformed state of the machine nodes, etc.

3. Mathematical models in the form of transcendental

and algebraic equations:

F(Y, X, Q, t) = 0 - transcendental,

4. Mathematical models in the form of logical

equations: used in automation systems, relays, etc.

5. Mathematical models of stochastic processes - mass

maintenance systems (computers, databases, shops, gas

stations, etc.).

Methods of constructing functional models

By their very nature, MM is divided into theoretical and

experimental (empirical) MM. All other classifications are

derivatives from the above. Let's consider the methods of

constructing these MM.

Methods of constructing theoretical functional

models:

In order to obtain theoretical distributed mathematical

models, fundamental physical laws are used: laws of mass

conservation, energy, amount of motion. Then they are

supplemented by boundary conditions and MM -is ready

The basis of obtaining lumped models is also known

laws, principles and hypotheses of a less general nature: the

basic law of the dynamics of the translational and rotary

motion, the principle of velocity generation, the Hooke's law,

the hypothesis of plane cross sections, and so on.

Methods of constructing experimental functional

models

 To obtain static models, we use the mathematical

apparatus of the theory of experiment planning, in which MM

 35

is obtained in the form of an algebraic equation of the form Y =

F (Q) - the response function.

I.5. EXPERIMENTAL MATHEMATICAL MODELS

OF DESIGN OBJECTS

 Planning an experiment

 Theoretical studies play an important role in the process

of knowing the objective reality, since they allow deeply

plunge into the essence of natural phenomena, create a

scientific picture of the world.

 The solution of problems by mathematical methods is

carried out by mathematical formulation of the problem, the

choice of a method for studying a mathematical model,

analysis of the result.

 The mathematical formulation of the problem appears

in the form of numbers, geometric images, functions, systems

of equations, etc.

 The mathematical model represents a system of

mathematical relations - formulas, functions, equations that

describe the object being studied.

 Stages of Mathematical Modeling:

- statement of the problem, definition of the object and purpose

of the study, task of signs of studying objects, etc .;

- choice of type of mathematical model (often several models

are constructed and the best is chosen);

- description of the transformation of input signals into the

output characteristics of the object (for example, using

algebraic dependencies);

- studying the quality of the model.

 Recently, there is a continuous expansion of the

application of methods of mathematical planning of the

experiment. These methods are successfully used to increase

the efficiency of experimental studies, to find optimal

technological regimes of production processes, to choose the

 36

design parameters of a product, the composition of a

multicomponent mixture, etc.

 In experimental studies, they deal with the object of

research. Objects of research can be devices, technological

lines, various products, etc.

 A rather common model of a research object is the

cybernetic system depicted in the diagram (fig. I.5.1).

 Fig. I.5.1. Model of a research

For such a system, inputs are distinguished - controlled factors

х1, х2, ..., хp, corresponding to the effects on the system, and

outputs y1, y2, ..., yn, (numerical characteristics of the research

objectives) - parameters (criteria) of optimization

Each factor can take in the experiment one of several values,

called levels. A fixed set of factor levels determines one of the

possible states of a cybernetic system. At the same time, this

set represents the conditions for conducting one of the possible

experiments.

 Each fixed set of factor levels corresponds to a certain

point in the multidimensional space of factors, which is called

factor space.

 Experiments can not be implemented at all points of the

factor space, but only at points belonging to the permissible

domain of the factor space G (fig. I.5.2).

 Fig. I.5.2. Factor space fo experiment

Model of a
research

O

G

X1 x1
(0

)
O

1

x2
(0

)

X2

 37

 The system responds differently to different sets of

factor levels. However, there is a certain correlation between

the levels of factors and the response (feedback) of the system.

 Function  that connects optimization parameter with

factors is called the response function, and the geometric image

corresponding to the response is the response surface (fig.

I.5.3).

 Fig. I.5.3. Response surface

The researcher is not aware in advance of the appearance of the

dependences j. He has to get approximate equality:





lj

xxxy kjj

...

),...,,(ˆ ˆ
21

 according to the experiment.

 The experiment must be set so that with a minimum

number of experiments, varying the value of independent

variables in specially formulated rules, construct a

mathematical model of the system and find the optimal values

of the properties of the system.

 38

 The choice of factors, optimization parameters and

models takes place taking into account the purpose of the

study.

 Distinguish quantitative and qualitative factors.

Quantitative ones can be measured, weighed, etc .; qualitative -

no, but for them it is possible to construct a conditional scale to

distinguish factor levels.

 On the other hand, factors can be controlled and

uncontrolled.

 Under the control are the following input variables

(factors) whose values in the experiment are known at each

time point. Thus, in the study of the technological process, all

variables that determine the state of the process and the values

of which are recorded using the appropriate measuring devices

are controlled. Controlled variables, in turn, can be divided into

managed and unmanaged. Managed are called variables

(factors) for which a purposeful change of their values is

possible during the experiment. Variables for which such a

change is not possible are called unmanaged.

 Uncontrolled factors include such input variables whose

values can not be determined during an experiment or those

that have an impact on the results of the experiment, but even

the existence of which the experimenter does not have

information.

 The characteristic of the goal of an experiment,

quantified, is called an optimization parameter (optimization

criterion, target function).

 To the optimization parameter put forward a number of

requirements:

- efficiency in terms of achieving the goal (that is, the

optimization parameter should evaluate the functioning of the

system as a whole, rather than its individual subsystems);

- universality (the ability to comprehensively characterize the

object of research);

 39

- a quantitative expression in one number;

- the presence of physical sense;

- Simplicity and affordability of the calculation.

 System properties can be described by different models.

To select a model, we formulate requirements:

- adequacy (ie the ability of the model to predict the results of

the experiment in some area with the required accuracy);

- content (ie the model should well explain the already known

facts, identify new ones and predict the future behavior of the

system);

- simplicity (this is a natural requirement: the model is simpler,

therefore, in other equal conditions, it is better).

 Depending on the task setting, different models can be

used. Often, explicit functional dependences of the form are

used:

),,...,,,...,(2121  mpxxxfy  (I.5.1)

where f - some function, called regression function;

pxxx ,..., 21 - independent variables (factors);

m ,..., 21 - unknown parameters;  - is a random

component. The latter is introduced into the model when the

data show a noticeable variation of a random nature. It is often

assumed that  is an additive in model (I.5.1), that is, (I.5.1)

takes the form:

  ),...,,,...,(2121 mpxxxfy (I.5.2)

The relations (I.5.1), (I.5.2) are called regression models

To independent variables (factors) pxxx ,..., 21 are given

one or another value, while experimentally obtaining the

corresponding values of y . Then (5.2) goes into the system of

relations from which the parameters m ,..., 21 are

determined. Due to the presence of a random component, the

 40

parameters m ,..., 21 can only be estimated (and not

precisely defined). In this case, the estimates mbbb ,..., 21 of

the corresponding parameters are obtained, and in reality,

instead of the model (I.5.2), they operate with an approach

ŷ to it:

),...,,,...,(ˆ
2121 mp bbbxxxfy 

 If a function f is a polynomial, then
mbbb ,..., 21

 are

called regression coefficients, and the function ŷ takes the

form:

 ...ˆ
,

0  
ji

jiij

i

ii xxbxbby (I.5.3)

 If a model is chosen, that is, the type of the dependence

y from x is chosen and the corresponding equation is written,

then it is necessary to plan and carry out an experiment for the

estimation of the numerical values of the coefficients of this

equation in the research area of the factor space.

 Evaluation of regression coefficients by the method

of least squares

 According to the results of experiments on the object of

study the certain kind of mathematical model can be obtained.

In particular, it can be a regression model with the required

function as a polynom of a certain order - the so-called

polynomial regression model.

 The quality of the approximation regression model to

the real object depends not only on experimental data, but also

upon the method of model building. The method of least

squares is often choosed for this purpose.

 Found equation is exposed to statistical analysis

(audited sustainability variance at different points of phase

space, the significance of the coefficients, the adequacy of

regression model). This is called a regression analysis.

 41

 The method of least squares

 Let n experiments are performed, in each of which

vector of independent variables (factors) x =(x1,…xp) has

certain values, and thus some values of the dependent variable

y are obtained. Let x
i
 = (x

i
1,…, x

i
p) set of values of the

dependent variables that were given to them in the i-th

experiment, yi - the corresponding values of the dependent

variable (i = 1,2, ..., n). According to the method of least

squares (MLS) as an estimation of vector parameters  =

(1,…,m) is taken vector b = (b1,…, bm) (another designation -

)(,...,1 m


) where the sum











n

i

ixf
i

yS
1

2
);()( (I.5.4)

takes a minimum value for  R
m
, where R

m
 - m-dimensional

Euclidean space.

 If the regression function f is differentiated by the

parameters (1,…,m), then the necessary condition for a

minimum of S() is the fulfillment of equalities

 mj
S

j

,...,2,1,0
)(









. (I.5.5)

 The system (I.5.5) consists of equations whose number

equals the number of unknown of system – the

coefficients mbbb ,...,, 21 . Such system is called the system of

normal equations or the normal system.

 Solution of the problem of minimizing the function S()

here will be given for the particular, but a very important case

of model (I.5.5). Specifically, we assume that p = 1, so the

vector of independent variables x is a scalar variable. Further

will be considered that m = 2. Besides, instead of signs 1, 2

for dependance parameters will be used more widespread

designation 0, 1. Will be also made a very important

suggestion that f is a linear function of the parameters 0, 1.

 42

We will consider in function f variable x is only in degree 1.

Thus, focus will be on such view of regression function:

f(x) = 0 + 1 x, (I.5.6)

and thus we will study following particular case of model

(I.5.5):

 y = 0 + 1 x + , (I.5.7)

where, in accordance with the above, x and y - respectively, the

independent and dependent variables, 0, 1 - model

parameters,  - random component of model.

 Dependence (I.5.7) called the simple linear regression.

 Let's go directly to the problem of estimation

parameters 0, 1 by the experimental data. Let the

independent variable x in experiments takes values x1,…,xn

(last applied designation somewhat different from above -

where x1, x2,... denote different independent variables, but now

only one independent variable, with x1,…,xn is its values; in

previous designations we had to write x1
1
,…,xn

1
), and the

dependent variable y - respectively, y1,…,yn. In this case the

problem of minimizing the function S() becomes:

 S()=S(0, 1)=  



n

i
ixiy

1

2
)(10   min, (I.5.8)

where the minimum is taken over all value 0, 1 for fixed

x1,…,xn and y1,…, yn. Let solution of the problem (8.5) be

(b0, b1),, and appropriate assessment regression function (8.3) -

ŷ, i.e.

 ŷ = ŷ(x) = b0 + b1 x. (I.5.9)

 The following figure shows schematically the linear

regression and a set of experimental points (xi, yi). Also

depicted vertical segments that connect these points and the

line (fig. I.5.4).

 It is easy to understand that in any way of drawing of a

straight line in order to approximate relationship between x

and y will occur deviation of experimental points from this line

(if all these points not lie on a straight line, but the latter almost

 43

never happens). It is convenient to measure these deviations as

differences ordinates of corresponding experimental points and

points on straight at values x = x1 ,…, xn, i.e. algebraic

values of vertical segments shown on fig. 1. If the

approximation is performed according to the MLS, then the

sum of the squares of the lengths of these segments will be the

lowest possible.

Clearly, that 1 and 0 are, respectively, the angular coefficient

and constant term (a segment on the vertical axis at x = 0) line,

and b1 and b0 - their estimated values, obtained from

experimental data. This last is, accordingly, the angular

coefficient and constant term in line equation (I.5.9).

To solve the problem (I.5.8) let's calculate partial derivatives of

function S = S(0, 1) by 0, 1. We have

  S / 0 = - 2 


n

i 1
(yi – 0 – 1 xi),

  S / 1 = - 2 


n

i
ix

1
(yi – 0 – 1 xi).

Equating the found derivatives to zero and performing

appropriate simplification we arrive at a system of two

equations, where are unknown parameters 0, 1:

 0 n + 1  xi =  yi,

 0 xi + 1  xi
2
 =  xi yi, (I.5.10)

 Fig.I.5.4. Geometric interpretation of the method of least

squares

 44

where to facilitate entry summation index is omitted

(hereinafter in similar situations mark  means summing over

all possible values of the summation index, in this case from 1

to n). This system is partial, the system of normal equations

(I.5.5) and has the same name. You can strictly prove that

normal system solution (I.5.10) and indeed the solution of the

problem of minimizing (I.5.8).

 The normal system of equations (I.5.10) is always

compatible, regardless of whether it's determinant is 0 or not.

Equality to zero of determinant can happen when, and only

when all the observations are conducted only in one point x. In

this case, this system has many solutions, each of which can be

found from the equation

0 n + 1n x =  yi, (I.5.11)

 The main case is one in which the determinant of the

system (5.10) is not equal to 0. In this case, the system has a

unique solution for which (for some further goals) is

convenient to introduce the following notation:

Sx y = (xi – x)(yi – y), Sx x = (xi – x)
2
, Sy y = (yi – y)

2
,

where, as above, the summation index is omitted. Let's also

indicate x and y the average of the independent and

dependent variable respectively:

 y = (y1+…+ yn)/n , x = (x1+…+ xn)/n.

Then we have the following expression for the solution of the

system (I.5.10):

 b1 = Sx y / Sx x , (I.5.12)

 b0 = xby 1 . (I.5.13)

 Finally, in the case of simple linear regression model of

relation between the target function y and independent variable

(factor) x is given by equation (I.5.9) in which the coefficients

b0, b1 determined by equalities (I.5.12), (I.5.13).

 45

Complete and fractional factor experiments

 Let some experimental research be carried out. Each of

the different values that accepts a variable iX in the

experiment is called the level of this variable. The number of

different levels of the factor iX is denoted by iS .

 An experiment, in which the levels of each factor are

combined with all levels of other factors, is called a complete

factor experiment (CFE).

A complete factorial experiment is written in the form:

kSSS  ...21 , since the number of different points or

different experiments kSSSN  ...211 .

 An experiment plan is called an incomplete or fractional

factor plan, if the number of different points

kSSSN  ...211 .

 Consider the response function

  kXXXf ,...,, 21 (I.5.14)

Let the number of different values that can take a variable
iX

),...,2,1(ki  in all experiments is equal to two, that is, 2iS . In

other words, the variable iX in each experiment accepts one of

two possible values, or they say, varies on two levels. Let's

denote them
1iX and

2iX . We will assume
1iX 

2iX , then
2iX is

called the upper level of the factor, and
1iX - the lower one.

We introduce coded variables:
i

ii
i

S

XX
x

0
 , ki ,...,2,1

where
2

210 ii
i

XX
X


 ki ,...,2,1 ;

2

12 ii
i

XX
S


 ki ,...,2,1 .

 46

Obviously, the coded variable ix (ki ,...,2,1) in each

experiment may have a value of 1 or -1. We call these values

upper and lower levels. Without limitation of generality we can

assume that in the expression (9.1) the variables
kXXX ,...,, 21

are given in coded form:

  kxxxf ,...,, 21 (I.5.15)

Consider the case when in the expression (I.5.15) the number

of independent variables 2k , i.e.  21, xxf .

All possible combinations of levels of variables 1x and 2x in

CFE 2
2
 are presented in Table I.5.1:

Table I.5.1
Number of

experiment

Matrix of independent variables Research

option
Observation

х0 х1 х2 х1 х2

1 1 -1 -1 1 (1) Y1

2 1 1 -1 -1 а Y2

3 1 -1 1 -1 b Y3

4 1 1 1 1 аb Y4

Here the symbol (1) means that both factors are in the lower

level; a - х1 in the upper; b - х2 in the upper; ab - both at the

upper level. This is CFE 2
2
. Often, it is believed that the

response function has the form:

 211222110 xxxx   (I.5.16)

Scheme CFE 2
2
 can be depicted in the form:

 Fig.I.5.5. Scheme CFE 2

2

 47

 It is easy to see that observations y1, y2, y3, y4 are

performed at the vertices of the square. The coefficients

(I.5.16) are the least squares method
Let's consider the case of CFE 2

3
. In this case:

 321 ,, xxxf . All different combinations of levels of

variables 321 ,, xxx are presented in Table I.5.2.

Table I.5.2
Matrix of independent variables Research

option
Observation

х0 х1 х2 х3 х1 х2 х1 х3 х2 х3 х1 х2 х3

1 -1 -1 -1 1 1 1 -1 (1) y1

1 1 -1 -1 -1 -1 1 1 A y2

1 -1 1 -1 -1 1 -1 1 B y3

1 1 1 -1 1 -1 -1 -1 ab y4

1 -1 -1 1 1 -1 -1 1 C y5

1 1 -1 1 -1 1 -1 -1 ac y6

1 -1 1 1 -1 -1 1 -1 bc y7

1 1 1 1 1 1 1 1 abc y8

The function of the response is sought in the form:

 321123

3131

0 xxxxxx ji

ji

ij

i

ii   


 (I.5.17)

The coefficients of (I.5.17) are obtained by the least squares

method.

 In a complete factor experiment k2 the number of

experiments kN 2 . As the number of variables k increases,

the number of experiments N is increasing rapidly. Therefore,

when large-scale k sales of CFE k2 becomes practically

impossible. For PFE k2 experiments the dependence, similar to

(I.5.17), has the form:

kkji

kji

ij

ki

ii xxxxxx 21...12

11

0   


 (I.5.18)

With growth N there is an increase in the number of

interactions and their order in (I.5.18). But often in the

equation (I.5.18), the effects of high-order interaction can be

neglected, or it is known a priori that some of them are absent.

The number of experiments to find estimates of unknown

 48

coefficients of such an equation can be significantly reduced.

This is achieved by applying fractional factor experiments. If in

CFE k2 observations are carried out at all vertices k -

dimensional hypercube, then using fractional monitoring plans

are carried out in some of them.

Consider an example of constructing a fractional replica. Let

the feedback function look like:

 



31

0

i

ii x (I.5.19)

In this expression the effects of pair and triple interactions are

absent: 0123231312  

If you use CFE 2
3
 to estimate unknown coefficients, then N =

 However, the number of experiments can be reduced

because in (I.5.19) the interaction effects are absent. To this

end, we will build a plan whose matrix has the form:

321 xxx





























111

111

111

111

D
 (I.5.20)



 Matrix of CFE 2
2

The matrix D is derived from the matrix CFE 2
3
 by removing

next lines from it: (1; -1; 1), (-1; 1; 1), (-1; -1; -1), (1; 1; -1).

Constructed fractional factor experiment (FFE) (5.20) is a

semi-recipe of CFE 2
3
. For its record, the notation is used: 2

3-1
,

where 2 is the number of levels; 3 - the number of variables;

N = 2
3-1

 - number of experiments. The code mark of the

semicircular: с; а; в; авс.

Consider the features of building a plan. As can be seen from

(I.5.19), the variable х3 at the points of the plan satisfies the

ratio:

 213 xxx  (I.5.21)

 49

(I.5.21) – this is the so-called generating ratio. It is easy to

construct after it (I.5.20) - initially CFE 2
2
, and then - vector-

column х3 corresponding to (I.5.21).

The coefficients of the model in the FFE are also based on the

least squares method.

 Planning an experiment on the “composition-property”

diagrams

 Let’s consider the planning of an experiment for

systems that represent mixtures of q different components.

Variables ix),...,2,1(qi  of such systems are

proportions (relative to the content) of the components of the

mixture and satisfy the condition:

 



qi

ix
1

1)0(ix (I.5.22)

 The geometric place of the points satisfying condition

(I.5.22) is (q-1) - a measurable regular simplex (triangle for q =

3, tetrahedron for q = 4, etc.). Each

point of such a simplex corresponds to a mixture of a certain

composition and vice versa, any point of a simplex corresponds

to any combination of relative contents of q components. To a

special simplex system (fig. I.5.6) in which the relative

contents of each component are deposited along the

corresponding faces of the simplex. On the vertices of a

simplex each ix =1, then - determined by the lines (or

surfaces) of a level, which are parallel to the opposite side (or

faces) of a

 Fig. I.5.6. Simplex coordinate system

х1

х2

х3

 50

 simplex. For example, for a three-component mixture, we have

a simplex in the form of a triangle 321 xxx on the plane

(Fig. I.5.6). The value of х1 at the vertex х1 is equal to one,

and on the х2х3 side it is zero.

 The problem of constructing a mathematical model

"composition-property" can be solved by writing the desired

function in the form of a polynomial of degree n in the

canonical form:

     
   





















n

m qiii

s

i

s

i

s

is

qi

n

m qji

m

jiji

m

ijii

m

m

m
xxxxxxxxy

3 ...11 2 1

2)(

21

2

2

1

1
...ˆ 

(I.5.23)

where nsss m  ...21 .

 A polynomial of this kind (so-called

reducedpolynomials) is obtained from ordinary polynomials of

the corresponding degree taking into account the relation:





qi

ix
1

1 and contain n

nqC 1
 coefficients.

 For example, a second degree polynomial, which in

general has the form:
2

133

2

122

2

1113223311321123322110
ˆ xbxbxbxxbxxbxxbxbxbxbby 

taking into account the correlation 1321  xxx will take the

form:

322331132112332211
ˆ xxxxxxxxxy   .

 To estimate the coefficients of the reduced polynomial

(I.5.23), plans were proposed that ensure a uniform spread of

experimental points in (q-1) - dimensional simplex. The points

of such plans are knots {q, n} -of simplex grid. In {q, n} - grid

for each factor (component) uses (n + 1) evenly spaced levels

in the range from 0 to 1 




  1...,

,
2

,
1,0

nn
xi

 and take a variety

of their combinations. Thus, the number of such combinations
n

nqC 1
 is equal to the number of coefficients in the given

 51

polynomial (I.5.23). A set of points  
quuu xxx ,...,, 21 ,

n

nqCNu 1,...,2,1  , where 1...,
,

2
,

1,0
nn

xiu  , 



qi

iux
1

1

forms a saturated simplex grid plan {q, n}.

 Examples of {q, n} grids:

 Planning with a pre-transformation of simplex area
 When solving q - component mixed problems, it is often

necessary to investigate only (q-1) -dimensional simplex

suboblusion of a complete (q-1) -dimensional domain. The sub

region can be specified by the restrictions on the region of

change of all components, for example ii qx  (i = 1, 2, ...,

q). In this case, the direct application of the above methods is

impossible because the condition 10  ix is violated.

Therefore, pre-transformation of the sub-region is made by

moving to a new coordinate system  qzzz ,...,, 21

For the sub-region we have:

 10  iz , i=1, 2, …, q; 1...)()(

2

)(

1  u

q

uu zzz , (I.5.24)

 where u – any point of sub-region.

- linear - quadratic

- cubic
imcomplete cubic

 52

Fig.5.7.Transformation of the sub-region

 Transforming relationship between coordinate systems

 
qxxx ,...,, 21 and  qzzz ,...,, 21 and providing (I.5.24) is given

by the matrix equation X = AZ, in expanded form

)(

)(

2

)(

1

)()2()1(

)(

2

)2(

2

)1(

2

)(

1

)2(

1

)1(

1

)(

)(

2

)(

1

...............

...

...

...
u

q

u

u

q

qqq

q

q

u

q

u

u

z

z

z

xxx

xxx

xxx

x

x

x

 (I.5.25)

Here the elements of the matrix A are the coordinates of the

vertices of the simplex;)(u

ix і)(u

iz - input and new coordinates

of the u-th transformed point.

 For all new z variables, all plans that were used for a

complete simplex can be constructed. However, realization of

the experiment in such conditional plans is impossible. For the

experiment, it is necessary to represent the experimental

compositions in the x-coordinates (transition for (5.24)).

I.6. THEORETICALAL MATHEMATICAL MODELS

OF DESIGN OBJECTS

Basic concepts of the theory of differential equations

Differential are called equations containing derivatives

of an unknown function of one or more independent variables.

Equations containing derivatives of several independent

variables are called partial derivatives.

х3

х2

х1

z1

z2

z3

z3

z2

z1

 53

Equations containing derivatives of only one of the

independent variables are called ordinary differential equations.

The general form of the differential equation of the n-th

order is as follows:

   nyyyyxF ,...,,,,  = 0. (I.6.1)

This is an implicit form of differential equation. An explicit

form of the equation of the nth order is an equation that is

solved with respect to the older derivative:

   .,...,,,, 1)( nn yyyyxfy (I.6.2)

 Let the variable x take values in the interval

I  R =(–∞, ∞). The solution of the differential equation on the

interval I is the differentiated function)(xy  in I, after

substituting it into an equation, it turns into equality for all xI

(the identity on the set I). The graph of the solution of the

differential equation is called the integral curve.

The general solution of the equation usually contains

one free numerical parameter and has the form

 y =  (x, C) (I.6.3)

where C is the mentioned parameter, φ- is a certain function.

Equation (I.6.3) determines the family of functions that depend

on the parameter C. The isolation of a single solution of the

family of solutions (I.6.3) can be fulfilled if the known initial

value y(x0) = y0 for some x0 I.

The general solution of equation (I.6.1) or (I.6.2) is the

family of functions of the form

 y =  (x, C1,…,Cn), (I.6.4)

where C1,…,Cn are numerical parameters, which are also called

arbitrary constants, and each function of this family is the

solution of this equation (at one or another numerical interval).

The parameters С1,…,Сn can be determined by the

initial conditions of the form y(x0) = y10,…,y
(n–1)

(x0) = yn0.

There are situations when solutions of differential

equations in explicit form (6.3), (6.4) can not be obtained, but

 54

we can find so-called general integrals, otherwise general

solutions of these equations. In this case, the general integral of

the differential equation (I.6.1) ((I.6.2)) is called so different

from the identity of the equation

   0,...,,,,
21


n

CCCyx , (I.6.3a)

that the solutions (I.6.1) ((I.6.2)) are differentiated functions

y = φ(x), which are obtained as solutions to equation (I.6.3a)

with values of stable С1,… Сn from certain certain domains.

The function  is also called the general integral of the

equation.

Methods of solving differential equations

 The problem of solving the ordinary differential

equation in the general case is much more complicated than the

problem of calculating single-time integrals, and therefore the

fate of cases of explicit integration is much lower here.

 Numerical methods for solving differential equations

can be divided into two classes. One of them includes methods

that use one starting value of the solution at each step, and the

second forms methods that use several values at each step

(multi-step methods). The latter are characterized by the fact

that based on the previously obtained several values of the

function, new ones are constructed, which then are refined with

the help of the differential equations themselves.

 The first class includes the methods of Runge-Kutti, in

particular, the methods of Euler-Cauchy and trapezius. The

second is, for example, the Adams method, the Krylov-Adams

method.

 Let's consider first the Euler-Cauchy method.

 Let a differential equation is given

),(yxf
dx

dy
 , (I.6.4)

where (x, y) belongs to the domain G with the initial

condition

 x = x0, y0 = y(x0) (I.6.4)

 55

 The method of constructing an approximate solution of

the Cauchy problem (I.6.4), (I.6.4) Is based on the concept of

so-called broken Euler. Laman Euler is a graph of a piecewise

linear function, which is constructed by the following rule. Let

h be a small positive number (step method). Let's consider in

the Cartesian plane a point with coordinates (x1, y1), where

 x1 = x0 + h, y1 = y0 + hf (x0, y0).

 Note that according to the Taylor formula, due to the

equations (I.6.4), (I.6.4), The value of y1can be considered as

an approximation to the value of the solution y(x1) of the

Cauchy problem under consideration. If the point (x1, y1)

belongs to the set G, then we continue the construction by the

inductive rule

 y і + 1 = y і + hf (x і, y і), і = 0, 1, 2,… .

 Each value y is considered as an approximation to the

value of the desired solution y at xі. Thus we obtain a sequence

of points(xі, yі) , і = 0,1,2,… , where all xі are located to the

right of the point x0. Similar construction, if necessary, is

performed to the left of point x0. On the received sequence we

construct a piecewise linear function

y(x) = yі + f (xі, yі)(x  xі), x [xі, xі + 1] , і = 0, 1, 2,… ,

which (or whose schedule) is called broken Euler. There are

several theorems that guarantee that, under certain conditions,

the Euler Layer directs to the solution of the Cauchy problem

(3.10), (3.10), When the step of the method h goes to 0.

 Let a differential equation be given

).,(yxf
dx

dy
 (I.6.4)

 It is necessary to find an approximate solution (I.6.4) at

points with coordinates nhxxhxxhxx
OnOO
 ,...2,

21
,

where h - is a constant step;
O

x - the coordinate of the

beginning of the segment.

 56

 Initial condition:)(,
OOO

xyyxx  . The approximate

value of the first derivative has the form

 ,1

h

yy

x

y

dx

dy
kk

k

k

k

k






  (I.6.5)

where 1...1,0  nk .

 Equating (I.6.4) and (I.6.5) we obtain:

),,(1

kk

kk yxf
h

yy





where:

).,(
1 kkkk

yxhfyy 


 (I.6.6)

 Using the recurrence formula (I.6.6) for the points

1...1,0  nk , we construct the Euler lamina 2, which

approximately replaces the integral curve 1 (see fig. I.6.1). The

essence of the Euler-Cauchy method lies in the fact that, due to

the beginning of each segment  
1

,
kk

xx , the tangent to the

integral curve 1 (fig. I.6.1) Is carried out.

 The accuracy of the Euler-Cauchy method is small.

Method error is proportional to
2h .

Fig. I.6.1. The calculation scheme of the Euler-Cauchy method

1 -integral curve

2 - Euler broken line

 57

 A variant of the Euler-Cauchy method is a trapezoid

method. It is implemented by applying at each step a recurent

formula

 .),(,),(
2

1

















 kkkkkkkk
yxhfyhxfyxf

h
yy (I.6.7)

 The error of the trapezium method is proportional to
3h

and is also attributed to the general methods of Runge-Kutta.

 Multi-steps solving of differential equations (finite

difference methods) are based on the resolution of these

previous steps. This allows you to increase the computational

speed. To realize the finite-difference methods for the

numerical integration of differential equations need to know

the function and its derivatives at several points close to the

original. Here you can note Picard's method and the method of

decomposition

Systems of differential equations

 Set of relationships



















0),...,,,...,,(

.................................

0),...,,,...,,(

0),...,,,...,,(

111

1112

1111

nn

n

n

yyyyxF

yyyyxF

yyyyxF

 (I.6.8)

where x - is an independent variable,

n

yyy ,...,,
21

 - unknown functions depending of x ,

n

FFF ,...,,
21

 - are known functions,

is called the system of differential equations of the first order.

 The solution of this system are functions

)(),...,(),(
21

xyxyxy
n

 that, when substituting in (I.6.8),

transform the system into identity.

 If the system of differential equations (I.6.8) allows for

the solution of the derivatives, then we obtain the system

 58





















),...,,,(

...........................

),...,,,(

),...,,,(

21

212

2

211

1

nn

n

n

n

yyyxf
dx

dy

yyyxf
dx

dy

yyyxf
dx

dy

 (I.6.9)

which is called normal.

 An example of one normal first-order equation is

),(yxf
dx

dy
 .

 This equation gives a field of directions in a plane yx, .

The solution of the equation is one parametric family of curves

located in one plane. If in this plane a point),(
00

yx and

),(yxf ,
y

f



 - are continuous, then the equation has a unique

solution that satisfies the initial conditions
00

)(yxy  .

 Let's now take two equations













),,(

),,(

212

2

211

1

yyxf
dx

dy

yyxf
dx

dy
 or













),,(

),,(

2

1

zyxf
dx

dz

zyxf
dx

dy
.

 Under certain conditions we get a solution

)(
11

xyy  ;)(
22

xzy  .

 These solutions can be considered as parametric

equations of the spatial curve in the coordinate system zyx ,, .

 Thus, the solution of one equation can be represented

by a curve of two-dimensional space. The solution of two first-

order equations can be represented by a curve in a three-

dimensional space. The solution of n equations of the first

order forms a curve in)1(n -dimensional space. These

curves are called integral.

 59

 Numerical solution of systems of differential equations is

carried out in the same way as solving a single differential

equation

 I.7. INTEGRATED AUTOMATED DESIGN SYSTEMS.

DESIGN AND PRODUCT LIFE CYCLE

MANAGEMENT SYSTEMS

 Introductory provisions

To understand the meaning of the CAD / CAM / CAE

systems (all these systems are collectively referred to as

automated design systems), it is necessary to examine the

various tasks and operations that have to be solved and

performed in the process of product development and

production. All these tasks, taken together, are called product

cycle (product cycle).

The development process begins with customer

inquiries served by the marketing department and ends with a

complete description of the product (executed in the form of a

drawing). The production process begins with technical

requirements and ends with the delivery of finished products.

The production process begins with the planning, which

is executed on the basis of the drawings received at the stage of

designing and ends with the finished product.

 As a result of production preparation, a production plan,

inventories of materials and software for the equipment are

made. The last phase of the development process is the

preparation of the project documentation. At this stage, the use

of systems for preparing work drawings becomes useful. The

ability of such systems to work with files allows you to

systematize the storage and ensure the convenience of finding

documents.

Computer technologies are also used at the production

stage. The production process includes planning the release,

designing and acquiring new tools, ordering materials,

 60

programming of machines with numerical control (CNC),

quality control and packaging.

 Basic concepts of CAD/CAM/CAE systems

Computer-aided design (CAD) – is a technology that

involves the use of computer systems to facilitate the creation,

modification, analysis, and optimization of projects. Thus, any

program that works with computer graphics, as well as any

application used in engineering calculations, relates to

automated design systems. In other words, most CAD tools can

range from geometric forms for working with forms to

specialized applications for analysis and optimization.

Computer-aided manufacturing (САМ) - is a

technology that involves the use of computer systems for the

planning, management, and control of production operations

through a direct or indirect interface with the enterprise's

productive resources. One of the most common approaches to

automation of production is numerical control (NC, numerical

control - NC).

CNC is to use programmed commands to control the

machine, which can be grinding, cutting, milling, punching,

bending and other ways to turn the workpieces into finished

parts.

Another important function of automated production

systems is the programming of robots that can work on flexible

automated areas by choosing and installing tools and parts that

are machined on CNC machines. The works can also perform

their own tasks, for example, to weld, assemble and transport

the equipment and parts of the shop.

Computer-aided engineering (САЕ) - is a technology

that uses computer systems to analyze CAD geometry,

modeling and studying product behavior to improve and

optimize its design. CAE tools can carry out many different

analysis options.

Hardware and software CAD

 61

To implement a computer-oriented approach to design

and production requires special hardware and software.

The key aspect is interactive form control, so hardware

and software for interactive manipulation of forms are one of

the major components of the CAD / CAM / CAE system.

Graphics devices and I / O peripherals together with the usual

computing module make CAD / CAM / CAE system hardware.

CALS- technologies. Substantive provisions

Modern conditions are characterized by increasingly

tight competition in the international market, increasing

complexity and knowledge-intensive production, which puts

new problems for industrialists and businessmen in the

country. Among them are:

- the critical time needed to create a product and organize

its sale;

- reduction of all types of costs associated with the

creation and maintenance of the product;

- improving the quality of design and production

processes;

- providing flexible and reliable maintenance

services.

An effective means of solving these problems in the last

decade are the new information CALS-technologies of cross-

cutting support of complex science-intensive products at all

stages of its life cycle (LC) from marketing to recycling. They

are based on a standardized single electronic data view and

collective access to them, these technologies make it possible

to substantially simplify the implementation of the stages of the

LC product and increase productivity, according to western

experience, by about 30%, to automatically provide a given

product quality.

For the first time, elements of CALS-technologies

began to be used in the mid-80 with the interaction of the US

Department of Defense with its suppliers, when asked to

 62

translate all operations with them in electronic form.

Subsequently, the scope of CALS-technologies expanded to the

entire life cycle of the product and went beyond the military

departments. Nevertheless, the most advanced users of CALS

technology are still military developers.

In the field of the civilian introduction of CALS-

technologies in the world, the leading aerospace, and nuclear

industry, automobile, and shipbuilding. In Europe, CALS has

also been widespread. The European Industrial Group in the

field of CALS has been created, national CALS programs are

created and created, as well as individual CALS projects.

Lack of introduction of CALS-technologies will make it

impossible for enterprises to participate in international

cooperation, will negatively affect the competitiveness and

attractiveness of manufactured products, will cause loss of

certain segments of the market.

At the moment, CALS is understood as a global

strategy for increasing the efficiency of business processes

performed during the life cycle of a product due to

information integration and continuity of information generated

at all stages of the lifecycle.

The means of realization of this strategy are CALS-

technologies, which is based on a set of integrated information

models: the life cycle itself and carried out in its course

business processes, product, and production and operating

environment.

The possibility of sharing information is ensured by the

use of computer networks and the standardization of data

formats, which provides a correct interpretation of information.

CALS (Continuous Acquisition and Life Cycle

Support) - is a United States Department of Defense initiative

for electronically capturing military documentation and linking

related information. This is a strategy for increasing the

efficiency, productivity, and profitability of the processes of

 63

economic activity of enterprises due to the introduction of

modern methods of information interaction of participants of

the LC product.

The life cycle of a product is a set of processes

performed from the moment of identifying the needs of society

in certain products until the time these needs are met and the

product disposed of.

The LC product is characterized by a large variety of

processes. The most famous are production process, design

process, procurement process. Each of these processes, in turn,

consists of technological processes and organizational and

business processes. For the general description of these

processes, the term "business process" is used.

Business process - a set of technological and

organizational and business processes, carried out purposefully

within the framework of a predefined organizational

structure.

Consider the definition of CALS in more detail. In the

literal translation, the abbreviation CALS means "continuity of

supply of products and maintenance of its life cycle". The first

part of the definition - "continuity of supply of products"

requires and provides optimization of the processes of

interaction between the customer and the supplier in the

development, design, and production of complex products,

whose lifespan, taking into account various modernizations, is

made for decades. To ensure efficiency, as well as reduce costs

and time, the customer-supplier interaction process must be

truly continuous. The second part of the definition of CALS -

"lifecycle support" - is to optimize the maintenance, repair,

spare parts supply and upgrades. Since the costs of maintaining

a complex hi-tech product in an able-bodied state often equal

or exceed the cost of its acquisition, a fundamental reduction in

the "cost of ownership" is provided by investments in the

establishment of a system of support for JCs.

 64

The purpose of using CALS-technologies, as an

instrument of organization and information support of all

participants in the creation, production and use of the product,

is to increase the efficiency of their activities by accelerating

the research and development of products, adding products

new properties, reducing costs in the processes of production

and operation of products, increase the level of service in the

processes of its operation and maintenance.

The subject of CALS is the technology of information

integration, that is, the sharing and sharing of information

about the product, environment, and processes that occur

during the product lifecycle. The basis of CALS is the use of a

complex of unified information models, standardization of

ways to access information and its correct interpretation,

information security, legal issues of sharing information

(including intellectual property), use at various stages of JCs of

automated software systems (CAD / CAM / CAE , ERP, etc.),

allowing to produce and share information in the format of

CALS.

Tasks that are solved with help of the CALS-

technologies

 Modeling the product lifecycle and executable

business processes. This is the first and very significant step

towards improving the effectiveness of an organizational

structure that supports one or more stages of the product's JC,

i.e. modeling and analyzing its operation.

The purpose of the business analysis is to identify

existing interactions between component parts and evaluate its

rationality and efficiency. To do this, using functional CALS-

technologies, functional models are developed that contain a

detailed description of the processes performed in their

interconnection. The resulting functional model not only

provides a detailed description of executable processes but also

allows solving a number of tasks related to optimization,

 65

estimation, and allocation of costs, estimation of functional

productivity, loading and balancing of components, that is,

questions of analysis and re-engineering of business processes.

Functional modeling techniques, for example, can be

successfully used in creating systems for product quality

assurance.

Design and production of the product. Joint, co-

operative design and product manufacturing can be effective if

it is based on a single product information model (electronic

product model). Once created, the product model is used

repeatedly. It is supplemented and modified; it serves as a

starting point for product upgrades. A product model in

accordance with this standard includes geometric data, product

configuration information, changes, approvals, and approvals.

The standard way of presenting design and technological data

allows you to solve the problem of information exchange

between different divisions of the enterprise, as well as

participants of the cooperation, equipped with heterogeneous

design systems. The use of international standards provides a

correct interpretation of stored information, the ability to

quickly transfer functions of one contractor to another, which,

in turn, can take advantage of the results of work already

carried out.

Operation of the product. It is known that the volume

of developer documentation for a complex science-intensive

product is very large. Therefore, traditional paper

documentation of complex products requires huge costs for

supporting archives, adjusting documentation, and also reduces

the operational attractiveness and competitiveness of the

product. The solution to the problem is to translate the

operational documentation for the product that comes to the

consumer, in electronic form. Electronic documentation can be

delivered on electronic media (for example, on CDs) or placed

on the Internet. Standardization guarantees the applicability of

 66

such electronic documentation on any computer platform. It is

important to note that in the electronic form the operational

documentation that was created earlier without the use of

computer systems can be converted. For products that are

already in operation for a long period and designed by

traditional methods, the task of supporting documentation is

equally relevant. As an example, you can cite the experience of

projects in the Navy and US Air Force to massively transfer

millions of manual pages and drawings to a standardized

electronic view. The received electronic documentation is

placed in special repositories on the Navy and Air Force bases

or directly from producers and is accessible through computer

networks. It uses modern scanning technologies, text

recognition, vectorization of drawings and circuits, creating

electronic directories for entire products and individual

systems.

What CALS-technology does

CALS is considered as a comprehensive system

strategy for improving the efficiency of all processes of

industrial products, directly affects its competitiveness. The

application of the CALS strategy is a condition for the survival

of enterprises in a context of growing competition and allows:

- to expand the scope of enterprises (sales markets)

through cooperation with other enterprises, provided by

standardization of the presentation of information at different

stages and stages of the life cycle;

- at the expense of information integration and

reduction of expenses for paper document circulation, re-input,

and processing of information ensure the continuity of the

results of work in integrated projects and the possibility of

changing the composition of participants without losing the

results already achieved;

- to increase the "transparency" and manageability of

business processes through their re-engineering, based on

 67

integrated models of JCs and running business processes,

reduce costs in business processes at the expense of better

balance of links;

- to increase the attractiveness and competitiveness of

products designed and manufactured in an integrated

environment using modern computer technologies and have the

means of informational support during the exploitation phase;

- to provide the given quality of production in the

integrated system of support of the LC by electronic

documentation of all processes and procedures;

- reduce production costs and reduce the cost of

production;

- reduce the time of product creation, its modernization

and increase its real lifetime, functioning in a workable state at

the expense of high quality and electronic support during

operation.

Life cycle of the software

The life cycle of software – is a period of time that

begins with the decision on the need to create a software

product and ends when it is completely decommissioned. This

cycle – is the process of construction and development of

software. The standard provides for the following stages and

stages of the creation of an automated system (AS):

- formation of requirements to the AS;

- development of the concept of the AS;

- study of the object;

- conducting the necessary research work;

- technical task;

- sketch project;

- technical project;

- working documentation;

- development of working documentation on the AS and

its parts;

- development and adaptation of programs;

 68

- putting into operation;

- preparation of the object of automation;

- conducting preliminary tests;

- conducting experimental exploitation;

- support of the AS;

- performance of work in accordance with warranty

obligations

- post-warranty service.

The model of the life cycle of the software is a structure

that determines the sequence of execution and the

interconnection of processes, actions, and tasks throughout the

life cycle. The life cycle model depends on the specifics, scale,

and complexity of the project and the specific conditions in

which the system is created and functioning. The standard does

not offer a specific life cycle model. Its provisions are common

to any life-cycle models, methods, and technologies for

creating an IP. It describes the structure of the processes of the

life cycle, without specifying how to implement or execute the

actions and tasks included in these processes.

The model of software includes stages; performance

results at each stage; key events - points of completion and

decision making.

Stage - part of the process of creating software, limited

by certain time frames and ends with the release of a specific

product (models, software components, documentation),

determined by the requirements specified for this stage.

Software life cycle models

Waterfall (cascade, sequential) model

The waterfall model of the life cycle was proposed in

1970 by Winston Royce. It involves the consistent

implementation of all stages of the project in a strictly fixed

order. Moving to the next step means complete completion of

the work in the previous step. Requirements defined at the

stage of forming requirements are strictly documented in the

 69

form of a technical specification and fixed for the entire time of

project development. Each stage ends with the release of a

complete set of documentation that is sufficient to allow the

development to be continued by another team of developers.

Stages of the project according to the cascade model:

- formation of requirements;

- designing;

- realization;

- testing;

- implementation;

- operation and maintenance.

Advantages of cascade model:

- complete and consistent documentation at each stage;

- It is easy to determine the terms and costs of the

project.

Disadvantages: in the fall-off model, the transition from

one phase of the project to another implies the complete

correctness of the result (output) of the previous phase.

However, the inaccuracy of a requirement or the incorrect

interpretation of it results in the fact that it is necessary to "roll

back" to the early phase of the project and the required

processing does not simply knock out the design team from the

graph, but often leads to a qualitative increase in costs and, it is

possible, to terminate the project in the form in which he

initially thought. A foolproof model for large projects is

realistic and can only be effectively used to create small

systems.

Iterative model
An alternative to the successive model is the so-called

model of iterative and incremental development, which also

received the name of the evolutionary model from T. Gilba in

the 70's. Also, this model is called an iterative model.

The model involves dividing the life cycle of the project

into a sequence of iterations, each of which resembles a "mini-

 70

project", including all development processes applied to the

creation of smaller fragments of functionality, as compared to

the project as a whole. The purpose of each iteration is to

obtain a working version of the software system, which

includes the functionality defined by the integrated content of

all previous and current iterations. The result of the final

iteration contains all the necessary functionality of the product.

The approach has its own negative sides, which, in

essence, are the reverse side of merit. Firstly, there is no

comprehensive understanding of the possibilities and

limitations of the project for a long time. Second, iterations

have to reject part of the work done before. Thirdly, the

integrity of specialists in the performance of work is still

reduced, which is psychologically understandable, because

over them constantly hangs the feeling that "everything can

still be reworked and improved later".

Version Control System

Version Control System – is software for facilitating

work with changing information. The version control system

allows you to save several versions of the same document, if

necessary, to go back to earlier versions, to determine who and

when they made one or another change, and much more. Such

systems are most widely used in developing software for

storing source code of the program, which is being developed.

However, they can be successfully applied in other areas where

work is underway with a large number of continuously

changing electronic documents. In particular, version control

systems are used in CAD, usually in the PDM system.

General information. The situation in which an

electronic document undergoes a number of changes during its

existence is quite typical. It is often important to have not only

the latest version but several previous ones. In the simplest

case, you can simply save multiple document variants by

numbering them accordingly. This method is ineffective (it is

 71

necessary to store several almost identical copies), requires

increased attention and discipline and often leads to errors;

therefore, tools were developed to automate this work.

Traditional version management systems use a

centralized model when there is a single document repository

driven by a special server that performs most of the functions

of version management. A document user must first obtain the

version of the document from the repository he needs; usually,

a local copy of the document is created, i.e. "Working copy".

The latest version or any of the previous ones may be obtained,

which may be selected by version number or date of creation,

and sometimes by other features. Once the necessary changes

are made to the document, the new version is placed in the

repository. Unlike a simple file save, the previous version is

not erased, but also remains in the repository and can be

obtained from there at any time. The server can use the so-

called. Delta compression is a way of storing documents that

store only changes between successive versions, which reduces

the amount of stored data. Since the most recent version of the

file is most in demand, the system can save it completely while

saving the new version, replacing the last previously saved

version in the repository with the difference between this and

the latest version. Some systems support the preservation of

versions of both types: most versions are stored in the form of

deltas, but periodically (by a special administrative command)

all versions of all files are kept in full; Such an approach

provides the maximum full recovery of history in the event of

damage to the repository. It often happens that several people

work simultaneously on one project. If two people change the

same file, one of them may accidentally cancel the changes

made by others. Version control systems track such conflicts

and offer solutions to them. Most systems can automatically

merge (merge) changes made by different developers.

However, such an automatic combining of changes, as a rule, is

 72

possible only for text files and provided different (non-

overlapping) parts of this file have been changed. This

limitation is due to the fact that most version control systems

are oriented to support the software development process and

the source code of the programs is stored in text files. If the

automatic merger fails, the system may suggest solving the

problem manually. Often it is impossible to perform a merger

either in automatic mode or in manual mode, for example, if

the file format is unknown or too complicated. Some version

control systems allow you to lock the file in the repository. The

lock prevents others from obtaining a working copy or

preventing a change in the working copy of the file (for

example, by means of the file system) and thus provides

exclusive access to only the user who is working with the

document. Many version control systems provide a number of

other features: Allows you to create different versions of a

single document, i.e. branches, with the general history of

changes to the point of branching and with different - after it.

Allows you to know who and when added or modified a

particular set of lines in a file. Conducts a log of changes in

which users can write an explanation of what and why they

changed in this version. Controls user access rights by

resolving or prohibiting reading or modifying data, depending

on who is asking for this action.

Typical working order with the system

Each version management system has its own specific

features in the set of commands, user order, and administration.

Nevertheless, the general working order for most VCS is

absolutely stereotypes. It is assumed that the project, whatever

it may be, already exists and the server hosts its repository, to

which the developer has access.

The first action required by the developer is to extract a

working copy of the project or the part that it will have to work

with. This action is performed using the standard version

 73

extractor command. The developer sets the version to be

copied, by default, the last one (or chosen by the administrator

as the main) version is usually copied. The removal command

establishes a connection to the server and the project (or part of

it - one of the directories with subdirectories) in the form of a

tree of directories and files are copied to the developer's

computer.

Modification. The developer modifies the project by

modifying the files in it in a working copy in accordance with

the design task. This work is carried out locally and does not

require calls to the VCS server.

Changes fixation. Having finished the next stage of

work on the task, the developer fixes his changes, passing them

to the server.

Versions merge. Changes within a single text file made

in different versions can be merged if they are located in

different places of this file and do not overlap. In this case, all

the changes made are made into the combined version.

Changes within one file, if it is not text, are always conflicting

and cannot be combined automatically. The overwhelming

majority of modern version control systems are focused, first of

all, on software development projects, in which the main kind

of file content is text. Accordingly, mechanisms for automatic

merging of changes are guided by the processing of text files,

that is, files that contain text consisting of strings of

alphanumeric characters, spaces, and tabs separated by lines of

the line's characters. When determining the admissibility of a

merger of changes within the same text file, the typical

mechanism of line comparison works.

Conflicts and their solution. The situation when the

merging of several versions of the changes made in them

intersects each other is called a conflict. In case of conflict, the

version control system cannot automatically create a merged

project and is forced to contact the developer.

 74

As already mentioned above, conflicts may occur at the

stages of fixing changes, updating or merging branches. In all

cases, when a conflict is detected, the operation is terminated

until its permission. In order to solve the conflict, the system,

in general, offers the developer three variants of conflicting

files: basic, local and server. Conflicting changes or displayed

to the developer in a special program modulus of the

combination of changes (in this case there are shown merging

options and dynamically changes depending on the user's team

combined file option), or simply marked with a special markup

directly in the text of the merged file (then the developer must

formulate the desired text in controversial places and save it).

Locking. The lock mechanism allows one developer to

seize a monopoly file or group of files to make changes to

them. As long as the file is locked, it remains accessible to all

other readers only, and any attempt to make changes to it is

rejected by the server. In some cases, the use of blocking is

entirely justified. An obvious example is the organization of

work with binary files, for which there are no tools for merging

changes, or such a merger is fundamentally impossible (as, for

example, for image files). If automatic merging is not possible,

then in the normal operation of any parallel change of such

files will lead to conflict. In this case, it is much more

convenient to make such a file blocked to ensure that any

changes to it will be introduced only consistently.

 I.8. CASE – TECHNOLOGIES OF COMPUTER

DESIGN

The concept of the CASE - technology. Implementation

methods

Trends in the development of modern information

technologies lead to a continuous increase in the complexity of

information systems (ICs) that are created in various areas of

 75

the economy. Modern large IP projects are characterized, as a

rule, by the following features:

· the complexity of the description (a considerable

number of functions, processes, data elements and complex

interrelationships between them), which requires careful

modeling and analysis of data and processes;

· presence of a set of closely interacting components

(subsystems) having their own local tasks and goals of

operation (for example, traditional applications related to the

processing of transactions and solution of regulatory tasks, and

analytical processing applications (decision support) using

unregulated data queries large volume);

· the absence of direct analogs, limiting the possibility of

using any typical design solutions and application systems;

· the need to integrate existing and newly developed

applications;

· functioning in a heterogeneous environment on several

hardware platforms;

· disunity and heterogeneity of individual groups of

developers according to the level of qualification and the

traditions of the use of certain or other tools developed;

· the substantial temporal extent of the project is due, on

the one hand, to the limited capabilities of the team of

developers, and, on the other hand, the scale of the

organization-customer and the degree of readiness of its

individual units prior to the introduction of IP.

For the successful implementation of the project, the

design object (IC) must be first and foremost adequately

described; full and consistent functional and information

models of the IC must be built. The accumulated experience of

IP designing so far shows that this is a logically complicated,

time-consuming and time-consuming work requiring a high

qualification of the specialists involved in it. However, until

recently, the design of IP was carried out mainly on an intuitive

 76

level with the use of non-formalized methods based on art,

practical experience, expert assessments, and expensive

experimental verification of the quality of IP operation. In

addition, in the process of creating and operating IP, user

information needs may change or refine, which further

complicates the design and maintenance of such systems.

In the 70's and 80's in the development of IPs widely

used methodology, this provides developers with strict

formalized methods for describing IPs and technical decisions

that are adopted. It is based on visual graphics techniques:

diagrams and diagrams are used to describe different types of

IP models. The visibility and rigor of the analysis tools allowed

developers and future users of the system to informally

participate in its creation from the outset, discuss and

consolidate understanding of the main technical solutions.

However, the widespread use of this methodology and its

compliance with its recommendations in the development of

specific IPs was quite rare, since it is virtually impossible to

develop in non-automated (manual) development. Indeed, it is

very difficult to manually design and graphically present the

strict formal specifications of the system manually, check them

for completeness and consistency, and even more so. If you

still manage to create a rigorous system of project documents,

then it's processing in the event of serious changes is

practically impossible. Manual development usually caused the

following problems:

· Inadequate specification of requirements;

· Failure to detect errors in design decisions;

· Low quality of documentation, which reduces

operational quality;

· Latency cycle and unsatisfactory testing results.

On the other hand, IP developers historically have

always been the last in a number of those who used computer

 77

technology to improve quality, reliability, and productivity in

their own work (the phenomenon of "a shoe without a boot").

The listed factors contributed to the emergence of

software-technological tools of the special class - CASE-tools,

implementing CASE-technology for creating and maintaining

IP. The term CASE (Computer Aided Software Engineering) is

currently used in a very broad sense. The primary meaning of

the CASE term, limited by the automation of software

development (software), has now acquired a new meaning,

which encompasses the process of developing complex ICs in

general. Now under the term, CASE-tools are software tools

that support the creation and maintenance of IPs, including

analysis and requirements formulation, application software

and databases, code generation, testing, documentation, quality

assurance, configuration management and project management,

as well as other processes. CASE-tools together with system

software and hardware form a complete environment for the

development of IP.

The emergence of CASE-technologies and CASE-funds

was preceded by research in the field of programming

methodology. In addition, the emergence of CASE-

technologies contributed to such factors as:

· Preparation of analysts and programmers susceptible to

the concepts of modular and structural programming;

· Widespread introduction and constant growth of the

productivity of computers, which allowed the use of effective

graphics tools and automate most of the stages of designing;

· Introduction of network technology, which enabled the

joint efforts of individual performers into a single design

process by using a database containing the necessary

information about the project.

CASE technology is an IP design methodology, as well

as a set of tools that allow you to visualize the subject area,

analyze this model at all stages of the development and

 78

maintenance of IP and develop an application in accordance

with the information needs of users. Most existing CASE-

based tools are based on structured (mostly) or object-oriented

analysis and design methodologies that use charts or text-based

specifications for describing external requirements,

relationships between system models, system behavior and

software architectures.

According to the Survey of Advanced Technology,

compiled by Systems Development Inc. According to the

results of the survey of more than 1,000 American firms,

CASE technology is currently ranked among the most stable

information technologies (half of all respondents used it in

more than a third of their projects, 85% of them completed

successfully). However, despite all the potential features of

CASE-tools, there are many examples of their failure, resulting

in CASE-tools becoming "shelfware". In this regard, it is

necessary to note the following:

· CASE-tools do not necessarily give immediate effect; it

can only be obtained after some time;

· Real costs for the implementation of CASE-funds are

usually much greater than the cost of their acquisition;

· CASE-tools provide opportunities for significant

benefits only after the successful completion of their

implementation.

To successfully implement CASE-tools the organization must

have the following qualities:

· Technology. Understanding the limitations of existing

capabilities and the ability to adopt new technology;

· Culture. Willingness to implement new processes and

relationships between developers and users;

· Management. Clear management and organization in

relation to the most important stages and implementation

processes.

 79

If the organization does not possess at least one of the

listed qualities, the introduction of CASE-funds may fail,

regardless of the degree of diligence to comply with various

recommendations for implementation.

"Pitfalls" use CASE-tools:

· The introduction of CASE-tools can be a rather lengthy

process and may not bring immediate returns. Perhaps even a

short-term decline in productivity as a result of efforts spent on

implementation. As a result, the management of the user

organization may lose interest in CASE-tools and cease support

for their implementation;

· The lack of full compliance between those processes

and methods supported by CASE-tools and those used in this

organization may lead to additional difficulties.;

· Some CASE tools require a lot of effort to justify their

use in a small project;

· The negative attitude of personnel towards the

introduction of the new CASE-technology may be the main

reason for the failure of the project.

Users of CASE-tools should be prepared for the need

for long-term operating costs, the frequent emergence of new

versions and the possibility of rapid moral aging, as well as

constant costs for training and advanced training of staff.

Despite all the reservations expressed and some

pessimism, a competent and wise approach to using CASE-

tools can overcome all of these difficulties. Successful

implementation of CASE-tools should provide such benefits

as:

· High level of technological support for software

development and support;

· Positive effect on some or all of the listed factors:

productivity, quality of products, compliance with standards,

documentation;

 80

· Acceptable level of return on investment in CASE-

tools.

 An example of an object-oriented CASE-tool – is

Rational Rose.

Analysis, verification, and optimization of design solutions

by means of CAD

The decision to reduce the time for technological

preparation of production and release of new products,

especially small batches, ensures their competitiveness and

enables the prompt response to changes in consumer demand.

This, in turn, reduces both the cost of manufacturing new

products and the time from the appearance of new design

developments to their introduction into industrial designs. To

solve this problem it is necessary to determine the set of

necessary methods and means of education of design routes -

sequences of design operations and procedures leading to the

achievement of the goal. At the same time, methods of

constructing design sequences are determined by the type of

design tasks.

The basis for the implementation of multi-objective

technological design are existing working production systems

(WPS), focused on the production of their production tasks

(PT) and have a free time fund of their technological

equipment. Technology equipment with a free time fund is the

resources of production systems (PS) necessary for the

operation of virtual production systems (VPS). On the basis of

the information on the resources of the VPS operatively formed

the configuration (possibly changing in time), maximally meets

the requirements of the executed PT. The peculiarity of such an

approach is the use of elements of intellectual control, which

allows you to make decisions about changing the configuration

of the VPS and the formation of control information in real

time with the minimum participation of the operator-operator.

 81

Multifocal technological design with intelligent control

in the WPS includes: techniques for designing technological

processes, a method for ensuring the purposeful generation of

possible variants of the WPS configuration, the method for

verifying generated options and selecting the best, as well as a

decision-making technique, on the basis of which the control of

the configuration process is carried out WPS in time.

Due to the fact that the decision-making and the

formation of its management influence is based on complex

creative processes, management must be built as an

intellectual. Thus, the conceptual idea of constructing a virtual

production system lies in the mobile organization of a

temporarily functioning object-oriented PS for the

implementation of current technological processes based on the

WPS. In other words, in the presence of some PT the strategy

of their implementation in the WPS is necessary, have a free

time fund and, in turn, oriented to the release of other, different

in their parameters of products. In this case, the

implementation of designed technological processes should not

negatively affect the timing and cost of production of the main

for these WPS products.

Implementation of the idea is achieved by the formation

of the air force rational configuration, which allows you to

carry out the PT in terms not exceeding the predetermined, but

close to them, with a minimum cost. This approach ensures that

there is no material rebuilding in the formation of the Armed

Forces for the implementation of the UA, the minimum storage

costs of finished products and the minimum amount of

resources used by operational production systems (OPS).

The use of free technological equipment WPS, focused

on the implementation of its planned technological processes,

provides a significant reduction in the time and complexity of

technological preparation of production. By the values of

attributes calculated on the basis of the information received

 82

from knowledge bases, with these operations, the selection of

the necessary information from the database is carried out.

At the stage of decision-making, in accordance with the

requirements and limitations of a higher level, a decision is

made to execute a certain amount of PT.

At the design stage, the analysis of the selected PT, the

development of the technological process in the form of a set

of routes, descriptions, equipment selection, equipment, etc., is

carried out.

At the planning stage, a plan is made for the

manufacture of products with the corresponding technology on

the technological equipment, which is the air force.

At the acquisition stage, the actual purchase of raw

materials, semi-finished products, components, information

necessary for the production of the product under the

appropriate technology is carried out.

At the stage of production, a plan for manufacturing

products is realized, which results in the implementation of the

PT.

At the stage of quality control of the finished product, a

comparison of the product with its specification and

notification of non-compliance, if any, are made.

 At the stage of delivery, the finished product, which

passed the quality control, is sent to the consumer.

The functions performed on the listed stages are

interrelated and can use data specific to one or another

function, which are split between several functions, or common

to all functions.

In solving the formation of the WPS, the formation and

application of databases containing information obtained on the

basis of the basic scientific provisions of the design technology

is required; methods of mathematical modeling, system-

structural analysis; theory of information, sets, mathematical

logic, control, automated design and programming technology.

 83

The model of the system of multi-objective

technological design allows not only to provide functions and

activities in the automated production, but is the basis for its

system design.

The model is based on the concept of "controlled

dynamic production", which performs the following successive

stages: decision-making, design assessment, technological

design, verification, control over the passage of the aircraft

through the VPS.

Implementation of the mathematical models of the VPS

operation takes into account that modern flexible automated

production is based on the massive application of computer

technology - starting from the Sun, which, as a rule, have built-

in microprocessors, and ending with automated workplaces of

designers, technologists, dispatchers, etc. By virtue of the

physical distribution of these components objectively arises the

task of creating an appropriate distributed computing system,

computer, covering areas, workshops, factories, industries,

etc.Ефективність управління

The effectiveness of management of the PS depends on

the sequence and values of the decisions taken, as well as on

the efficiency of the information received. In order to make the

necessary decisions, it is necessary to obtain relevant

information on the aircraft in real time, as well as about the

past or the future. Since the time for processing information is

limited, the analysis of the production situation and the

formation of the appropriate command team requires the

automation of the implementation of these actions. This leads

to the need to use models simulating the main actions of the

operator in the management of the aircraft. Such a system must

have the elements of intellectual control. Generation of variants

is based on an evolutionary method that uses genetic

algorithms. To implement the generation of variants, a known

method of combining heuristics. This method reduces the

 84

required computing power of the entire genetic algorithm as a

whole. Upon completion of the formation of the next versions

of the configuration of the VPS, the process of their

verification is carried out. The purpose of verification of the

results is to evaluate the options and choose the best among

them. In case, if at some stage of generation the generated

version turns out to be able to work (it corresponds to the

conditions of the target functions), such variant is considered as

a worker, and on the basis of it the team is formed for practical

realization in the VPS. Verification is a complex procedure,

based on simulation simulation of processes occurring in the

VPS. At individual stages of simulation, local optimization is

carried out using such methods as linear programming,

dynamic programming, etc. The choice of a particular method

depends on the type of the current task. Simulation modeling

allows to separate from the general task of simulation separate

local, for solution of which these methods can be applied. The

purpose of this phase is the attempt to find within the

framework of the current airborne configuration of the best

variant in terms of the volumes of production resources used in

it under the provision of specified conditions. If the best

configuration option that you receive does not meet the

specified conditions, the ranking of the generated population

occurs. On the basis of a ranked population, a new population

is formed, and then the process is repeated until the working

variant is obtained. After receiving arrays of data on

technological operations, the execution of which in one or

another composition and sequence provides execution of the

WPS, it is necessary to formulate the final routes for their

implementation and the sequence of launch in the Air Force.

This task is complicated by the high computational power due

to the high dimensionality. As the research shows, in solving

such problems it is necessary to apply methods of evolutionary

search for rational solutions.

 85

 Structural synthesis when designing technological

processes

At the heart of the solution of the problems of structural

synthesis of various complexity is the overcoming of options of

the invoice set. When checking each sample includes:

- creation (search) of the next variant;

- the decision to replace the previously selected version

with new ones;

- Continue or stop searching for new variations.

The tasks of structural synthesis in automated

technological design depend on the level of complexity. In the

simplest problems of synthesis (the first level of complexity),

the structure of the technological process or its elements

(operations, transitions) is determined. Then for a given class

(group, subgroup, or type) of details the so-called generalized

route (generalized structure) of processing is established. It

includes a number of processing operations that are specific to

a particular class, subclass or group of parts. The list is orderly

and represents a multitude of existing individual routes. Routes

have a typical sequence and content, and they reflect the

advanced production experience of the enterprise or industry.

At the third level of complexity of structural synthesis, the

problem of choosing a variant of a structure in a plural with a

large but finite number of known variants is solved. For

solving such problems, algorithms of targeted selection are

used (for example, algorithms of discrete linear programming);

algorithms sequential, iterative and others; The task is to

complete the search by restricting the search field to the stage

of the formation of the output data.

The optimal strategy has the property that, whatever the

way to achieve some state (technological transition), the

following solutions should belong to the optimal strategy for

the part of the surface treatment plan starting from this state

(technological transition). A technology engineer working in a

 86

dialog with a computer chooses such a variant of the structure,

which represents the optimal compromise between the

performance of the machine and the probability of providing a

given quality of the workpiece. The computer helps the

technologist to make a decision to change the structure,

calculating the program modes and the performance of the

machine.

The overall complexity of design can be reduced by

switching from dialog mode to batch. Similar tasks are solved

by applying training procedures (procedures for the formation

of concepts). Recognition and classification programs are used

as training procedures. At the same time there is a

redistribution of routine and creative work using a batch mode

of a higher level, the technologist is engaged in the preparation

of output data and checks the final result.

The most complex level of structural synthesis is aimed at

creating fundamentally new technological processes and is

solved by so-called search engineering (artificial intelligence).

One of the ways of search engine construction is to use the

method of heuristic techniques:

- Explanation or formulation of technical task.

- Choice of one or several analogs (prototypes) of the

technological process.

- Analysis of prototypes, identifying their drawbacks and

formulating the problem in the form of answers to the question:

what are the quality indicators in the prototype of the synthesis

process and how much is it desirable to improve them? what

new parts quality parameters should ensure the production

process to be created and which quality parameters should lose

the considered prototype?

 The great difficulties encountered in search engine design

and heuristic programming have led to the emergence of expert

systems. The basis of expert systems is the database used by

the expert (user technologist) in the dialogue mode. The

 87

disadvantage of such systems is the dependence of the quality

of design technological solutions (in particular, the design of

route and operational technologies) from the level of expert

preparation. Another drawback is to limit the range of tasks to

be solved and their dimensionality. The need to increase the

level of intellectualization of the automated process of

synthesis of technological solutions at high dimensions of the

solved problems requires the development of fundamentally

new solutions, one of which was the creation and use of new

methods and algorithms for the implementation of this work,

and for them - the future.

 I.9. SOFTWARE DEVELOPMENT METHODOLOGIES

(RUP, XP, MSF, DSDM, RAD)

 Rational Unified Process (RUP)

 Rational Unified Process (RUP) is an iterative

software creating process, created with Rational Software.

RUP Blocks

Main blocks are:

 Roles(who). The role determines a set of skills,

attribution and responsibility.

 Operating products(what). An operating product is

something received from an errand, including all the

documents and models, produced during the operation on the

process.

 Task(how). The task describes a unit of work, assigned

for the role, that guarantees a significant result.

The tasks are divided into nine disciplines in every iteration:

six "engineering discipline" (business-modeling, requirements,

analysis and planning, realization, testing, deployment) and

three supporting disciplines (configurations and changes of

variables, projects management, environment).

 88

Main RUP components

Six engineering disciplines

Business-modeling disciplines

Business-modeling explains, how to describe the view

of the organization, in which the system is going to be

engrained and how to utilize this view for assigning the

process, roles and responsibilities.

Organizations are becoming more and more dependent

on IT systems, which requires information systems engineers

to know, in addition, that whatever they develop is inserted into

the establishment. The first goal for the business-modeling is

establishing a deeper understanding and communicational

channel between business and software engineering.

Understanding business means, that programmers must

understand the structure and dynamics of a targeted

organization(client), current problems in the organization and

possible improvements. They also have to provide a general

knowledge of a targeted organization among the clients,

conclusive users and developers.

Disciplines of requirement

Requirements show exactly how to reveal requests of interested

individuals and turn them into a set of requirements for the

operating products.

Analysis and projecting discipline

The point of analysis and projecting discipline is to show, how

the system is going to be realized.

Model design consists of class projecting, structured into

packets and subsystems with clearly defined interfaces, that

will represent, what will become the components in the final

realization. It also contains a description of how the operands

of these constructed classes cooperate for completing the

precedent.

Realization discipline

The main goal for the realization is:

 89

 To determine code organization from the point of view

of a subsystem realization.

 Classes and objects realization in terms of the (output

files, executed files, etc.).

Objective: results integration, received by individual operands

(or groups) into the executed system.

Testing discipline

 Testing objectives:

* To examine cooperation between operands.

* Check a due integration of all the software components.

Rational Unified Process offers an interactive

approach, which means, that all the testing is done during the

whole project. This allows to reveal defects as soon as possible,

that drastically lowers the cost of fixing a defect. The tests are

carried out by four quality surveys: reliability, functioning,

supplement productivity and system productivity. For every

one of these quality criterion surveys, the process describes

how to pass the planning life cycle, designing, executing and

test rating.

Dissemination discipline

The goal for the dissemination is to successfully make product

versions and to supply software for conclusive users. It covers

a wide field of measures, including manufacturing of external

software versions, software and business-supplements packing,

software installation and further support and assistance for

users.

Project's life cycle phases

RUP Phases and Disciplines

RUP defines project's life cycle, which consists of four

phases.

Initial phase

 The initial goal is an adequate system estimate as a base

for calculating primary valuations and budget. Business-cases

are established at this stage, that include business-context,

 90

success factors (expected income, market recognition etc.), and

financial predictions.

If the project fails at this stage, which is called a life cycle's

milestone, it can be canceled as well as iterated after being

reconstructed with the purpose of satisfying the criteria.

Specification phase

The main goal is to make the key risks, discovered

based on the analysis, more acceptable, until the very end of

this phase. Specification phase is a phase where the project

starts to get it's colors. The subject's province is being analyzed

at this stage, the architecture of the project also starts to take its

shape.

 Constructing phase

The main goal for this phase is to create software

system. All of the attention falls onto developing components

and other characteristics of the system. All the main coding is

being done at this stage. Larger projects can have several

constructing phases. This stage creates the first software

release.

Plantation phase

The main objective is transferring the system from

developing into product, making it clear and comprehensible

for the conclusive user. In terms of this phase the activity

includes educating conclusive users and attendants, system

testing for checking the users' expectation. The product is also

being tested for quality standard, set in the initial phase. If all

of the requirements are met, product release landmark is

achieved and at this point the developing cycle is over.

Extreme Programming (XP)

Extreme Programming (XP) — one of the most

flexible software developing methodology. The authors of this

methodology are Kent Beck, Ward Cunningham, Martin

Fowler and others.

 91

The name comes from the idea to apply useful

traditional methods and software development practice, lifting

them to a new "extreme" level. This way, for example, code

revision implementation practice, that relies on one

programmer reviewing the code, written by another

programmer, in the "extreme" version means "pair

programming", meaning that the first programmer does the

coding, while his partner continuously checks the code at the

same time.

Basic XP techniques

All twelve basic extreme programming techniques can

be combined into four group:

 Fine-scale feedback

 Test-driven development

 Planning game

 Whole team, Onsite customer

 Pair programming

 Continuous, not batch process

 Continuous integration

 Design improvement, Refactoring

 Frequent small releases

 Understanding, shared by everyone

 Simple design

 System metaphor

 Collective code ownership or Collective patterns

ownership

 Coding standard or Coding conventions

 Programmer's welfare

Testing

XP provides the writing of automated tests (software

code, written specifically for purposes of testing other software

codes). Special attention is payed to two types of testing:

 Module unit testing;

 Functional testing.

 92

The developer can't be sure whether his code is written

correctly, until absolutely all modules tests of the developed by

him system work. Module tests (unit tests) allow the

developers to make sure, that every one of them works

correctly separately. They also help other developers

understand the purpose of different parts of the code and how

they work — the logic behind the tested code becomes clear

during the examination of the test code, since it is obvious

how it should be used. Module tests also allow the developer to

refactor without any warning.

 Functional tests are designed to test the functioning of

the logic generated by the interaction of several parts. They are

less detailed than unit tests, but when implemented, they relate

to a large amount of code, so the chance to detect some

improper behavior is obviously larger. Because of this, the

writing of functional tests in industrial programming often

takes higher priorities over writing unit-tests. An

approach called TTD (test-driven development) is more

important for XP. According to this approach, firstly, the test,

that does not initially pass (as the logic it has to check does not

exist yet) is written, than the logic that is needed to pass the test

is implemented.

 Game of planning

 The main goal of the game of planning is to quickly

form an approximate work plan and constantly update it as the

terms of the task become more and more clear.

 Game of planning has its own participants and its

purpose. He himself reports on the need of one or another

functionality. Programmers give an approximate valuation for

each functionality. The customer and programmers have the

same goal, but everyone uses a different way to achieve it: the

customer chooses the most important tasks in accordance with

the budget and the programmer evaluates the tasks in

accordance with his capabilities for their implementation.

 93

 Ideally the scheduling game of customers and

programmers involvement should be conducted systematically,

before the start of the next iteration of development. This

makes it simple to make adjustments to the project accordingly

to the successes and failures of the previous iteration.

 The customer is always nearby

 An XP "customer" — is not the one paying the bills, but

the conclusive user of the software product. XP states that the

customer should always be available for phone calls and

questions.

 Pair programming

 Pair programming assumes that the entire code is

created by pairs of programmers working at the same

computer. One of them works directly with the text of the

program, while the other one looks through his work and looks

at the general picture of what is happening. During the work on

the project, the pairs are not fixed: they change so that each

programmer in the team had a good idea of the whole system.

Thus, dual programming enhances interaction within the team.

 Continuous integration

 In traditional techniques, integration, generally, is

performed at the very end of the work on the product, when all

components of the developing system are fully prepared. In

XP, the integration of the code of the entire system is

performed several times a day, after the developers are

convinced that all module tests are working correctly.

 The main task of continuous integration is to quickly

find and fix errors, to improve the software quality and to

reduce time spent on software verification and updates.

 Refactoring

 Refactoring is a method of code improving without

changing its functionality. XP assumes that the code written in

the process of working on the project, will almost certainly be

 94

repeatedly reworked. XP developers recycle the previously

written code to improve it.

 Refactoring process is step-by-step changes

accompanied by frequent start of the tests. The refactoring

result is a pure code and a simple design.

 Frequent small releases

 Product releases should be put into operation as often as

possible. The amount of work on each version should take as

little time as possible. At the same time, each version should be

sufficiently meaningful in terms of usefulness for business.

 The sooner the first working version of the product is

released, the better. The earlier the customer begins operating

the product, the earlier the developers receive information from

him about whether the product meets the customer's

requirements. This information can come out rather useful in

planning the next issue.

 Simplicity of designing

 XP proceeds from the fact that conditions of the

problem can be repeatedly changed in course of the work,

meaning that the developing product should not be designed at

once completely in advance. An attempt to design the system

in detail at the very beginning of the work is a waste of time.

XP assumes that designing is an important process than needs

to be carried out continuously throughout the whole project.

Designing should be carried out in small stages taking

constantly changing requirements into account.

 System metaphor

 Architecture is an idea about components of the system

and their interconnections. Developers have to analyze

software architecture in order to understand where the new

functionality should be added in the system and what will

interact with the new component.

 System metaphor is an analog for what most techniques

call architecture. The metaphor of the system gives the team an

 95

idea of how the system currently works, where the new

components are added and what form should they take.

 Coding standards

 All team members must comply with the requirements

of the general coding standards during work.

 If the team does not use common coding standards, it

becomes harder for developers to refactor; there may be

complications during the change of the partner in pair

programming; project progress is slowing down.

 It is necessary to ensure that it is difficult to understand

who is the actual author of certain parts of the code in the

framework of XP — the whole team works unified as a single

person. The team must come up with a set of rules, then each

member of the team must follow these rules in the process of

writing the code.

 Collective ownership

 Collective ownership means each team member is

responsible for the entire source code. This way everyone can

make changes to any part of the program. Pair programming

supports this practice: all programmers become acquainted

with all the parts of the system code, working in different pairs.

The important advantage of the collective ownership of the

code lies in the fact that it accelerates the development process,

because when the error is spotted, it can be corrected by any

programmer.

 Microsoft Solutions Framework (MSF)

Microsoft Solutions Framework (MSF) — software

creation methodology, proposed by Microsoft. MSF bases

itself on Microsoft practical experience and describes people

and working processes management in solution development

process.

MSF methodology consists of principals, models and

personnel management, processes and technology elements

disciplines, typical for most projects.

 96

 MSF consists of two models and three disciplines.

MSF contains:

 models:

 project group model

 processes model

 disciplines:

 projects managing discipline

 risks managing discipline

 preparation managing discipline

Project group model

 MSF (MSF Team Model) describes Microsoft

approaches for personnel project worker's organization and his

activity with a purpose of maximizing project's success. This

model determines role clusters, their competence spheres and

responsibility zones. It also determines recommendations for

members of the project group, which allows them to

successfully complete their mission of making the project a

reality.

According to the MSF model, project groups are built

as relatively not big multi-profile teams. Members of these

teams divide responsibilities and supplement each other's

cognizance area.

The MSF project group consists of six role clusters.

Each one of them is responsible for:

 program management (program manager) — solution

architecture developing, administrative service;

 development (developer) — application and

infrastructure development, technological consultation;

 testing (QAE) — planning, tests developing and

accounting according to tests;

 release management (release manager) —

infrastructure, accompaniment, business-processes, finished

product emission;

 97

 customer satisfaction (user experience) — teaching,

ergonomics. graphical design, technical support;

 production management (product manager) —

business-priorities, marketing, representation of customer's

interests.

The MSF project group offers braking big teams (more than 10

people) apart into small multi-profile direction groups (feature

teams). These small groups work in parallel, synchronizing

their efforts regularly.

MSF process model is a general development

methodology and IT solutions introduction. The unique point

about this model lies in its application during development of

wide spread of IT projects due to its flexibility and absence of

strictly intrusive procedures. This model combines the abilities

of two standard models of life cycle: waterfall and spiral.

MSF process is oriented on milestones — key points of

the project, that define achievements within its essential

(transitional or conclusive) result. This result may be evaluated

and analyzed.

MSF process model accounts for constant project

requirements changes. It states that solution development

should consist of short cycles, which create a progressive

motion ranging from the earliest solution versions to its final

look.

Processes model includes following main phases of process

development:

 Conception developing (Envisioning)

 Planning

 Developing

 Stabilizing

 Deploying

Projects management — a specific area, during which

certain goals are being set, balancing the amount of work,

resources (such as money, labor, materials, energy, space etc.),

 98

sometimes quality and risks. The key success factor for project

management is an existence of a specific plan, set in advance,

minimizing the amount of risks and plan deviations, an

effective shift management.

 Risks management

 Risk management is one of Microsoft Solutions Framework

(MSF) key disciplines. This process includes risk detection and

analysis; prophylaxis strategy planning and realization and

alleviating the potential consequences; tracking the state of the

risks and learning one's lessons based on the received

experience. MSF motto — we do not fight the risks - we

control them.

 Preparation management

Preparation management is also one of the key

Microsoft Solutions Framework (MSF) disciplines. It is

dedicated to knowledge management, professional skills and

abilities, required for planning, creating and successful

decision accompaniment.

Dynamic Systems Development Method (DSDM)

 Dynamic Systems Development Method (DSDM) - is a

software development technique based on the rapid

development concept (Rapid Application Development, RAD).

 RAD (Rapid application development) - is a concept of

creating software development tools, that pays special attention

to the programming speed and convenience, the creation of a

technological process that allows the programmer to create

computer programs as fast as possible. RAD has been

widespread and approved since the end of the XX century.

 Basic RAD

· The toolkit should be aimed at development time minimizing.

· Creating a prototype for customer requirements clarification.

· Development cycle: each new product is based on an

evaluation of the previous version of the customer.

· Version development time minimizing by transferring the

 99

already completed modules and adding functionality to the new

version.

· The team of developers should cooperate closely and each

participant must be prepared to perform several obligations.

· Project management has to minimize the development cycle

duration.

 DSDM - is and iterative approach, that gives a special

meaning to the prolonged participation of the customer (user)

in the process of working on the project. The goal of the

method is to hand over a finished project on time and to invest

in the budget, but at the same time adjusting requirements

changes of the project during its development.

 DSDM is a flexible software development

methodology, as well as developments that are not part of the

IT area.

 DSMD consists of three stages: pre-project, project life

cycle stage and a post-project stage. The project life stage

consists of 5 phases:

 - research of the possibility to be implemented;

 - economic density research;

 - creating a functional model;

 - modeling and development;

 - implementation phase.

 It is possible to include parts of other techniques, such

as the Rational Unified Process (RUP) and extreme

programming (XP), into DSDM under certain conditions.

 The DSDM method was developed in the UK at the end

of the 19th - beginning of the 20th centuries by the DSDM

consortium.

 Principles of DSDM

 Involving the user (customer) is the basis for

conducting an effective project, where the most accurate

decisions are made.

 100

 Frequent delivery of product versions. The analysis of

versions from previous iterations is taken into consideration in

the next one.

 Methodology of development is iterative. It is based on

the customer's feedback in order to achieve the optimal

solution from and economic standpoint.

 Testing is integrated into the development lifecycle.

 Interaction and cooperation between all participants is

necessary for its effectiveness.

 Preconditions for DSDM use

 - it is necessary to organize interaction between the

project team, future users and management team;

 - a possibility to split the project into smaller parts,

which will allow the usage of an iterative approach

 Life cycle of the project and DSDM stages

 DSDM consists of three successive stages: the pre-

project stage, the life cycle stage of the project and the post-

project stage. The main stage is the life cycle stage of the

project: it consists of five phases, which form an iterative

approach to the development of information systems.

 Stage 1 - pre-project

 At this stage, the probable parts of the project are

identified, the fund allocation and the assignment of the project

team is carried out. Solving tasks at this stage will help prevent

problems at later stages of the project.

 Stage 2 - life cycle of the project

 Stages of the life cycle of the project:

- research:

 - research of the opportunity to be implemented;

 - economic density research;

- creation of a functional model;

- modeling and development;

- implementation.

 Stage 3 - post-project

 101

 Efficient operation of the system is provided at this

stage. The support of the project is held as a continuation of the

development, based on the iterative nature of DSDM. Instead

of completing the project in one cycle, it is common to go back

to previous stages or phases, in order to improve the product.

 Let's look at the life cycle stage of the project

 Phase 1: research

 - 1а: research of the possibility to be

implemented
 The possibility of implementing a project within the

framework of DSDM is tested during this phase.

 The final result of this phase is a report on the DSDM

applicability to the project implementation, as well as an

approximate global plan of the project and a protocol of

possible project risks.

 - 1b: economic density research
 After recognizing the possibility of project

implementation within DSDM, business processes are checked

at this stage, groups of users are being involved, and their

needs and wishes are analyzed. The use of working groups is

the most requested method at this stage. Participants of the

project discuss the planned system within the working groups;

the received information is collected into the list of

requirements, which are distributed according to priorities.

Based on the received priorities, a development plan is created

that will serve as a benchmark for the whole project.

 In order to create this plan, a very important project

methodic is used, called time-boxing. This methodic is required

to achieve the goals of DSDM: to put up with time and budget,

while maintaining the necessary quality of the product.

 The result of this stage is a description of the sphere of

commercial activity, a description of the architecture of the

system and a development plan, which indicates the most

important steps in the development process.

 102

 Phase 2: creating a functional model

 The requirements that were defined at the previous

stage are transformed into a functional model. It consists of a

prototype and models. Prototyping is the key project method at

this phase, which allows organizing an involvement of users

into the project. The developed prototype is analyzed by

different groups of users. Each iteration is tested in order to

achieve the required quality.

 Creation of a functioning model can be divided into the

following sub-steps:

 Defining a functional prototype: determining a functional

that will be laid in the prototype of the current phase.

 Plans adjustment: an agreement on how and when the

prototype functionality should be developed is taking place.

 Creating a functional prototype. The prototype created

during previous iterations is studied and refined.

 An analysis of a functional prototype is to check whether

the designed system is in a good condition. Testing and

reviewing is applied.

 The outcome of this phase is a functional model and a

functional prototype, which together represent the functionality

obtained in this iteration, ready for testing by the user. The list

of requirements is then updated and the already accomplished

items are removed from it. The protocol for potential risks is

also updated.

 Phase 3: Design and development

 The main task for this iteration is to merge the

functional components from the previous stage into a single

system, that meets the requirements of users. Testing is

underway again at this stage.

 The summary for the stage is the creation of a

constructive prototype for testing by users. The tested system

than moves to the next phase. The appearance and functionality

 103

of the system are generally ready at this stage. Another result

the creation of custom documentation.

 Phase 4: implementation

 At the implementation stage, the tested system, along

with the user documentation, are delivered to future users and

their training with the system is carried out. The system is

analyzed to meet the requirements set at the early stages of the

project.

 Implementation can be divided into the following sub-

phases:

• System approval by the user: conclusive users approve the

tested system for further implementation.

• User training: training the future user to operate the system.

• Implementation: implementation of the tested system among

users.

• Market of the system analysis: analysis of the influence of the

released system on the market. The main question is whether

the goal, set for designing the system, has been achieved.

 Based on this, the project either moves on to the next stage or

returns to the previous one further refinements.

 Stage summary: a finished system, suitable for usage by

conclusive users, and a detailed project analysis document.

 Basic DSDM methodics

 Time-boxing

 Time boxing is one of the main DSDM methodics. It is

used to achieve the main objectives of DSDM: to develop the

information system in time, to commit to the budget while

maintaining quality. The main idea of time-boxing is to divide

the whole project into parts, each one with its own budget and

time limits.

 MoSCoW

 MoSCoW method opens up a way to divide objects by

priority. In the context of DSDM, the MoSCoW method is used

to prioritize requirements. The abbreviation stands for:

 104

 - MUST - the requirements MUST meet the economic

needs.

 - SHOULD – SHOULD this requirement be met, if the

project does not depend on its success.

 - COULD – whether you COULD leave this

requirement if it is not applicable to the business need of the

project.

 - WON'T - whether you WON'T be able to postpone

the fulfillment of the requirement if you still have time to

spare.

 Prototyping

 This methodic relates to the creation of the prototypes

of the system during its development in the early stages. It

allows you to identify deficiencies in the system and allows

future users to test it. Thus user engagement in work is

implemented, being one of the success key factors of the

DSDM method.

 Testing

 The third and important part of achieving the DSDM

goal is to create a high-quality information system. In order to

achieve this, the DSDM system insists on conducting the

testing of each iteration. The project team is free to choose the

way to manage the testing.

 Workgroup

 This is one of the DSDM methodics, which aims to

bring together different participants of the project in order to

discuss the requirements, functionality and adjust mutual

understanding.

 Modeling

 This methodic is mandatory and is used to visualize the

individual side of the system or sphere of activity in the form

of diagrams. Simulation provides a better understanding of the

project's business activity for the entire team.

 Configuration management

 105

 A good implementation of the configuration

management technique is important, because of the dynamic

nature of DSDM. A strict control over the quality of the

products is required, since they are released quite often.

 I.10. METHODS OF TESTING AND ADJUSTING

PROGRAMS AND SYSTEMS

 The fundamental concept of SS design includes basic

conditions, strategies and methods, that are used in LC

processes and provide testing (verification) on a multitude of

trial data sets. The SS designing methods include structural,

object-oriented and other methods. They are based on

theoretical, instrumental and applied tools that influence the

testing process.

 Testing is a process of identifying errors in software by

executing the source code of the SS on the test data, collecting

performance data in the performance dynamics in a specific

operating environment, detecting various errors, defects,

failures and bugs, caused by irregular and abnormal situations

or accidental software termination. Organizational aspects play

an important role in the conduct of verification and testing: the

activity of a group of specialists who plan these processes,

preparation of tested data and monitoring of tests.

Processes of LC (life cycle) of verification and validation of

programs

 Verification and validation as methods ensure,

respectively, the verification and analysis of the correct

implementation of the specified functions and software

compliance with the requirements of the customer, as well as

assigned specifications. In standards, they are presented as

independent LC processes and are used starting from the stage

of the analysis of requirements and finishing with a verification

of the correctness of the code functioning at the final stage,

namely, testing.

 106

 For these processes, the goals, tasks and actions for

verifying the correctness of the created product (working,

intermediate products) are defined at the stages of the LC. Let's

look at their interpretation:

 1.1. Verification process
 The goal of the project - is to make sure that each

software product of the project reflects the agreed requirements

for their implementation. The process is based on:

 • strategy and verification criteria for all working

software products;

 • implementation of standard actions of verification;

 • eliminating the shortcomings found in software

products;

 • on agreed results of verification with the customer.

 The verification process can be carried out by the

program executor or another employee of the same

organization or an employee of another organization, such as

the customer. This process includes actions for its

implementation and execution.

 The implementation of the process is to identify critical

elements (processes and software products) that have to be

verified, the choice of the verifier, the tools supporting the

verification process, the preparation of the verification plan and

its approval. When verifying according to the plan and

requirements of the customer, the correctness of the system

functions, interfaces and interconnections of the components,

as well as access to the data and to the means of protection are

checked.

 1.2. Validation process

 The goal of the process is to make sure that the specific

requirements for the software product are met, and this is

accomplished by:

 • developed strategy and validation criteria for all work

products;

 107

 • conditioned validation actions;

 • demonstration of the developed software products

accordance to the requirements of the customer and rules of

their use;

 • coordination of the results of validation with the

customer.

 Validation process can be carried out by the executor or

another person, for example, the customer, who is taking

actions on the implementation and execution of this process

according to the plan, which displays the elements and tasks of

verification. It uses methods, tools and procedures to perform

the tasks of the process to establish compliance test

requirements and features of the use of project software

products.

 Additional actions are taken at other stages of LC:

 • checking and controlling design decisions with the

help of revision of the working process techniques and

methods;

 • access to the CASE-system, which contain procedures

for checking product requirements;

 • reviews and inspections of the interim results for

compliance with their requirements in order to confirm that the

software meets the requirements and satisfies the conditions of

the system execution.

 Thus, the main task of the verification and validation

processes lies in verification and confirmation, that the

conclusive product meets its purpose and satisfies the

requirements of the customer. These processes are

interconnected and are usually defined by a common term

"verification and validation" (V & V).

 V & V is based on process planning and verification for

the most crucial elements of the project: a component,

interfaces (software, technical and informational), objects

 108

interactions (protocols and messages) and data transfers

between components and their protection.

 After checking individual components of the system,

they integrate, re-verify and validate the integrated system; a

set of documentation is created that reflects the accuracy of the

verification of requirements formation, inspection results and

testing.

 Programs testing

 Testing can be interpreted as a process of semantic

debugging (verification) of the program, which consists in

executing the sequence of different sets of final tests for which

the result is known beforehand. That is, the testing involves the

implementation of the program and obtaining concrete results

of the tests.

 Tests are gathered up so that they cover as many types

of situations as possible in the program algorithm. The less

strict requirement is for every brunch to be executed at least

once.

 Historically, the first kind of testing was debugging.

 Debugging is a verification of a description of a

software object in order to detect errors and their further

elimination. Compilers detect errors with their syntactic

control. After that, a verification is carried out to verify the

correct code and validation to verify the compliance of the

product with the requirements.

 The purpose of the test is to check the performance of

the functions implemented in accordance with their

specifications. Functional tests are created based on the basis of

external specifications of functions and design information on

the processes of the LC. Due to those tests, the testing is

conducted taking into account the requirements, formulated at

the stage of domain analysis.

 Methods of functional testing are divided into static and

dynamic.

 109

 Static testing methods

 Static methods are used during inspections and

consideration of component specifications without their

execution. The technique of static analysis lies in

methodological review and analysis of the structure of the

programs, as well as in proving their correctness. Static

analysis is aimed at analyzing the documents developed at all

stages of the LC and exists in order to inspect the source code

and cross-check of the program. Software Inspection is a

static verification of the program's compliance with the given

specifications. It is carried out by analyzing various

representations of the results of the projection

(documentations, requirements, specifications, schemes or

source code of programs) in the process of LC. Reviews and

inspections of the projecting results and their compliance with

the customer's requirements provide a higher quality of the

created LC. Documents of the operational design of LC are

reviewed during the inspection of the program alongside with

independent experts and participants of the development of the

LC. At the initial designing stage, the inspection involves

verification of completeness, integrity, singularity, consistency

and compatibility of documents with the initial requirements to

the software system. At the stage of implementation of the

system, inspection refers to the analysis of the texts of

programs to comply with the requirements of standards and

adopted guidance documents of programming technology.The

effectiveness of this examination is that the involved experts

try to look at the problem "from a different angle" and subject

it to a comprehensive critical analysis.

 Dynamic testing methods

 Dynamic testing methods are used in the

implementation of programs. They are based on a graph that

binds the causes of errors with the expected responses to these

errors. In the process of testing, the information, accumulated

 110

on the errors, is used in assessing the reliability and quality of

the SS.

 Dynamic testing is oriented at verifying the correctness

of the SS based on a number of tests with purpose of checking

and collecting data at the stages of LC and conducting the

measurements of individual indicators (the number of failures,

malfunctions) of testing to assess the quality characteristics

specified in the requirements. Testing is based on systematic,

static (probabilistic) and simulation methods.

 Let's give them a short reference.

 Systematic testing methods are divided into methods in

which programs are viewed as a "black box" (using

information about a solvable problem), and methods, in which

the program is viewed as a "white box (using structure of the

program). This type is called data management testing or input

/ output management. Its purpose is to clarify the

circumstances in which the behavior of the program does not

meet its specifications. In this case, the number of errors found

in the program is a criterion for the quality of the input testing.

 The purpose of the dynamic testing of programs relies

on the principle of the "black box" - the detection of the

maximum number of errors with a single test using a small

subset of possible input data.

 Functional testing

 The purpose of functional testing is to identify

inconsistencies between the actual behavior of the

implemented functions and the expected behavior in

accordance with the specification and output requirements.

Functional tests should cover all implemented functions, taking

into account the most common types of errors.

 The tasks of functional testing include:

 • Identification of a set of functional requirements;

 111

 • identification of external functions and the

construction of a sequence of functions in accordance with

their use in the SS;

 • identification of the set amount of input data of each

function and determination of areas of their alteration;

 • construction of test kits and function testing scripts;

 • Identification and presentation of all functional

requirements through test kits and testing for errors in the

program and in conjunction with the environment.

 Tests created by project information are related to data

structures, algorithms, interfaces between individual

components, and are used to test components and their

interfaces. The main objective is to ensure the completeness

and consistency of the implemented functions and the

interfaces between them.

 The combined method of "black box" and "white box"

is based on the division of the input field of a function on the

subfield of error detection. The subfield contains homogeneous

elements that are processed correctly or incorrectly. To test the

subfield, the execution of the program is performed on one of

the elements of this field.

Infrastructure of the testing process of the SS

 When talking about infrastructure of the testing

process, it means:

 •allocating of testing subjects;

 •carrying out the error classification for the regarded

class of tested programs;

 • preparation of tests, their execution and search for

various kinds of bugs and errors in components and in the

system as a whole;

 • service of conduction and management of the testing

process;

 • analysis of test results.

 112

 Test objects are components, group of components,

subsystems and systems. A testing strategy is being developed

for each one of them. If the testing object refers to "white box"

or "black box" while the compound of components is

unknown, then the testing is done by inputting the input test

data to obtain the source data. The strategic goal of testing is to

make sure that each considered input data set corresponds to

the expected output data. With this testing approach the

internal structure knowledge and knowledge of logic of the

tested object is unnecessary.

 The test designer has to look inside the "black box" and

explore the details of the data processing, protection and data

recovery issues, as well as interfaces with other programs and

systems.

 For some types of objects, the testing team can not

generate a representative set of test kits that demonstrate the

functional integrity of the component at all possible test kits.

Therefore the "white box" method is advisable, which allows

you to use the structure of the object to organize testing on

different branches. For example, you can run test kits that pass

through all operators or all checkpoints of the component in

order to make sure in to make sure they work properly.

 Methods of searching for errors in programs

 The international ANSI/IEEE standard separates all

errors in the development of programs into the following types:

 • Error - a state of a program, in which the wrong

results are given due to defects in the program operators or in

the technological process of the development, which leads to

an incorrect interpretation of the source information, and

therefore to the wrong decision.

 • A fault is a consequence of the developer's errors at

any of the stages of development. They can be contained in the

initial or project specifications, program code texts, operational

 113

documentation, etc. A defect or a failure can be detected in the

process of execution of the program.

 • Failure is a refusal of the program to function or an

inability to perform the functions defined by the requirements

and limitations. It is considered as an event to be the cause of

 the transition of the program into a non-operating state

due to errors, hidden somewhere in the program or due to

failures in the functioning environment.

 All of the potential mistakes in the program are divided

into the following classes:

 • logical and functional errors;

 • calculation and runtime errors;

 • input/output and data manipulation errors;

 • interface errors;

 • errors of data capacity, etc.

 Logical errors are the reason for the violation of the

logic of the algorithm, the internal inconsistency of variables

and operators, as well as the rules of programming. Functional

errors are the result of improperly defined functions, violation

of the order of their application or a lack of completeness of

their implementation, etc.

 Calculation errors usually come up as a result of

inaccuracy of the initial data and implemented formulas,

mistakes in the methods, misuse of operations of calculations

or operands. Runtime errors are caused by a failure to provide

the required processing speed or recovery time.

 Input/output and data manipulation errors are the result

of poor data preparation for execution of the program, failures

in entering or sampling them in the database.

 Interface errors relate to the mistakes of the

relationship of individual elements with each other, which

manifests itself in the transmission of data among them as well

as when interacting with the environment of functioning.

 114

 Capacity errors relate to data and are a consequence of

the fact that implemented methods of access and database

capacities do not meet the actual capacities of information of

the system or the intensity of their processing.

 These basic classes of errors are inherent in different

types of software components and they appear in programs in

different forms. Thus, when working with DB errors of data

management and manipulation, logical errors in the task of

application procedures of data processing appear.

Computational errors prevail n computing programs, while

there are logical and functional errors in the management and

processing programs. Software that consists of many multiple

programs that implement different functions may contain

different types of errors. Interface errors and capacity

violations are typical for any type of system.

 Analysis of the types of errors in the programs is a

prerequisite for creating test plans and testing methods to

ensure software correctness. At the present stage of the

software development support tools (CASE technologies,

object-oriented methods and tools for models and programs

designing) a specific projecting is carried out: the software is

protected from the most typical errors and therefore prevents

the occurrence of software defects.

 Classification of errors and tests

 Errors

 Based on long-term activity in the field of software

development, different firms have created their classification of

errors, grounded on identifying the reasons for their appearance

in the development process, in the functions and in the field of

functional activities of the software.

 We know many different approaches to the

classification of errors, let's take a look at some of them.

 115

 IBM has developed an approach to the classification of

errors, which involves the breakdown of errors into categories

with developers being responsible for them (table I.10.1).

Table I.10.1

Classification of errors (developed by IBM)

Context

errors
Classification of errors

Function Interface errors of conclusive users caused by

hardware or related to global data structures.

Interface Errors in interaction with other components, in

calls, macros, control blocks or in the list of

settings.

Logic Errors in program logic, as well as in the use of

variables.

Assignment Errors in the data structure or in initializing the

variables of individual parts of the program.

Looping Errors caused by time resource, real time or

time distribution.

Environment Errors in the repository, in the management of

changes or in conclusive versions of the

project.

Algorithm Errors associated with ensuring the efficiency,

correctness of algorithms or data structures of

the system.

Documentation Errors in maintenance documents records or in

publications.

 Hewlett-Packard used the Butch classification by

setting the percentages of errors found in the software at

different stages of development (Fig. I.10.1)

 116

 Fig. I.10.1. Hewlett-Packard errors classification

 Tests

 Let's look at a classification of the verification tests on

tested objects at the main stages of development:

 Testing of specifications

- checking the completeness and consistency of

functions;

- checking of interfaces consistency.

 Program testing

- verifications of the structure of the program;

- verifications of calculations and data

transformations.

 Testing of the complex

- checking the structure of the complex;

- checking the component interface;

- checking the memory limit;

- checking the execution duration;

- checking the completeness of the complex

problems solving.

 Tests during trial

- compliance verification;

 117

- checking the convenience of the installation of the

working version;

- checking the working process of the complex on

the equipment;

- user interface verification;

- checking the comfort of the escort.

 Software testing service

 Developers and customers are both responsible for

testing.

 In order to achieve the testing objectives, a software

verification service is usually created - a team of testers that

does not depend on the state of the developers of the software.

This team includes analysts, programmers, test engineers.

 Testers compile test plans, test data and scripts, as well

as test schedules from the very beginning. Professional testers

work in conjunction with the configuration management team

in order to provide their documentation and other mechanisms

for linking each other with the requirements of the project,

configuration, and code.

 Many experts compare the testing system with the

creation of a new system, in which analysts reflect the needs

and objectives of the customer, working together with

designers and seeking to implement the ideas and principles of

the system. The errors found in the program and changes in the

system are reflected in the documentation, requirements,

projects, as well as in the descriptions of input and output data

or in other developed artifacts. The changes made during the

development process lead to the modification of the test

scenarios or, to a large extent, to the change of the testing

plans. Configuration management specialists take these

changes into account and coordinate compilation of tests.

 The test team also includes users. They evaluate the

results, utilization simplicity, and also express their opinion

about the principles of the system.

 118

 Testing process management

 All software testing methods are merged into a

database, which contains the results of the system testing. It

contains all the components, test data, test results, and

information about documenting the testing process.

 The project database is supported by special tools, like

CASE, which provide analysis, object data collection, data

flows, etc. The project database also stores the initial and

referenced data, used to compare the data accumulated in the

database to the data obtained during the system testing.

 Various types of calculations of the characteristics of

this process and the methods of planning and management are

carried out during the testing process:

 - calculation of the duration of the performance of

functions by collecting average performance of operators index

without executing the program on the machine. Some

components appear, which require a huge amount of time in

the real environment;

 - the management of the implementation of the test by

selecting the tests of verification, their execution, conducting a

comparison with the reference values. The results of this

process are displayed on the screen, for example, in a graphical

form (path through the graph of the program), in the form of

UML diagrams, data on the failures and errors, or specific

values of the output arguments of the program. This data is

analyzed by the developers to formulate the conclusions about

directions of further verification of the correctness of the

program or their completion.

 - Testing planning is intended for the distribution of the

terms of testing work, the distribution of testers for certain

types of work and their ability to compile tests for system

testing. Certain tests, criteria an input values are created during

the process of coming up with the plan for execution paths.

 119

I.11. MODELS OF QUALITY AND RELIABILITY

IN SOFTWARE ENGINEERING
 The development of the PS reached such a level of

development that it became necessary to use engineering

methods, including for evaluating the results of design at the

LC stages, monitoring the achievement of quality indicators

and metric analysis thereof, assessing the risk and the degree of

use of the finished components to reduce the cost of developing

a new project. The basis of engineering methods in

programming is a quality improvement, for the achievement of

which methods for determining quality requirements,

approaches to selecting and improving models of metric

analysis of quality indicators, methods for quantitative

measurement of quality indicators at the LC stages were

formed.

 Software quality is the subject of standardization.

Standard GOST 2844-94 defines the quality of software as a

set of properties (quality indicators) software that provides its

ability to meet the needs of the customer in accordance with

the purpose. This standard regulates the basic model of quality

and indicators, the main one among them is reliability. The ISO

/ IEC 12207 standard defined not only the main processes of

the PC's development of the PS but also the organizational and

additional processes that govern the engineering, planning and

quality management of the PS.

 According to the standard at the stages of the LC,

software quality control should be carried out:

● verification of compliance with the requirements of the

product and the criteria for achieving them;

● verification and certification (validation) of the

intermediate results of the software in the phases of the LC and

measuring the degree of satisfaction of the individual indicators

achieved; testing of the finished PS, a collection of data on

failures, defects and other errors detected in the system;

 120

● selection of reliability models for assessing reliability

based on the results of testing (defects, failures, etc.);

● assessment of quality indicators specified in the

requirements for the development of the PS.

The following describes models of quality and reliability, as

well as ways to use them.

 Software quality model

 Software quality is a relative concept that makes sense

only when real conditions of its application are taken into

account, therefore, the requirements for quality are set in

accordance with the conditions and the specific area of their

application. It is characterized by three aspects: the quality of

the software product, the quality of the LC processes and

quality of support or implementation (fig. I.11.1)

 Fig. I.11.1. The main aspects of software quality

 The quality of the product is achieved by the procedures

for controlling intermediate products on the LC processes, by

checking them for achieving the required quality, and by the

methods of accompanying the product. The effect of

implementing the PS is largely dependent on the knowledge of

the staff of the product functions and the rules for their

implementation.

 The software quality model has the following four

levels of presentation.

 121

 The first level corresponds to the definition of

characteristics (indicators) of software quality, each of which

reflects a separate point of view of the user on the quality.

According to the standard, the quality model includes six

characteristics or six quality indicators:

1. functionality;

2. reliability;

3. usability;

4. efficiency;

5. maintainability;

6. portability.

 The attributes for each quality characteristic

corresponds to the second level that detail the different aspects

of a particular characteristic. A set of attributes of quality

characteristics is used in assessing quality.

 The third level is designed to measure quality with the

help of metrics, each of them according to the standard is

defined as a combination of the method of measuring the

attribute and the scale of measuring the values of attributes. To

assess the quality attributes at the LC stages (when reviewing

documentation, programs and test results of programs), metrics

with a given estimated weight are used to level the results of

the metric analysis of the aggregate attributes of a particular

indicator and the quality as a whole. The quality attribute is

determined using one or more evaluation methods at the LC

stages and at the final stage of software development.

 The fourth level is the estimated element of the metric

(weight), which is used to estimate the quantitative or

qualitative value of a separate attribute of the software

indicator. Depending on the purpose, features, and conditions

of software maintenance, the most important quality

characteristics and their attributes are selected.

The selected attributes and their priorities are reflected in the

requirements for system development or the corresponding

 122

priorities of the software class standard to which this software

applies.

 Characteristics of quality indicators

 The characteristics of the software quality indicators are

shown in Fig.I.11.2

 1. Functionality is a set of properties that determine the

ability of a software to perform a list of functions in a given

environment and in accordance with the processing

requirements and system-wide means. A function is understood

as an ordered sequence of actions to satisfy consumer

properties. Functions are a target (basic) and auxiliary.

 The attributes of functionality include:

functional completeness is a component property that shows

the degree of sufficiency of the main functions for solving

problems in accordance with the purpose of the software;

o сorrectness (accuracy) is an attribute that indicates the

degree to which the correct results are achieved;

o Interoperability is an attribute that shows the ability to

interact with software by special systems and environments

(OS, network);

o security - an attribute that indicates the ability of the

software to prevent unauthorized access (accidental or willful)

to programs and data.

 2. Reliability is a collection of attributes that determine

the software's ability to convert raw data into results under

conditions that depend on the lifetime period (wear and aging

are not taken into account). The decrease in software reliability

occurs due to errors in requirements, designing, and

implementation. Refusals and errors in programs appear for a

specified period of time.

 he sub-characteristics of software reliability include:

o Fault-freeness is an attribute that determines the ability

of a software to function without failures (both programs and

equipment);

 123

 Fig. I.11.2. Model of software quality characteristics

 124

o resistance to errors is an attribute that indicates the

software's ability to perform functions under abnormal

conditions (hardware failure, data and interface errors,

violation of operator actions, etc.);

o restore ability is an attribute that indicates the ability of

the program to restart for re-execution and recovery of data

after failures.

 3. The ease of use is characterized by a multitude of

attributes that show the necessary and suitable conditions for

use (dialog or non-dialog) of the software by a specified range

of users to obtain relevant results. In the standard, the usability

is defined as a specific set of attributes of the software product,

characterizing its ergonomics.

The sub-characteristics of ease of use include:

o understandability - an attribute that determines the

effort spent on recognizing the logical concepts and conditions

for using the software;

o study ability (ease of learning) is an attribute that

determines the user's efforts to determine the applicability of

the software by using operational control, diagnostics, and

procedures, rules, and documentation;

o efficiency - an attribute that indicates the response of

the system when performing operations and operational

control;

o consistency is an attribute that shows the compliance of

a development with the requirements of standards, agreements,

rules, laws, and regulations.

 4. Efficiency is a set of attributes that determine the

relationship between the levels of software execution, the use

of resources (tools, equipment, materials - paper for the printer,

etc.) and services performed by the staff, etc.

To the sub-characteristics of the effectiveness of the software

are:

 125

- reactivity is an attribute that shows the response time,

processing, and execution of functions;

- resource efficiency - an attribute that shows the amount and

duration of resources used when executing software functions;

- consistency is an attribute that shows the correspondence of

this attribute with the specified standards, rules and regulations.

 5. The accompaniment is a set of properties that show

the efforts that need to be spent on making modifications that

include updating, improving and adapting the software when

the environment, requirements, or functional specifications

change.

Accompaniment includes the sub-characteristics:

 - analysability is an attribute that determines the

necessary effort to diagnose failures or identify parts that will

be modified;

 - variability is an attribute that determines the removal

of errors in the software or the introduction of changes to

eliminate them, as well as the introduction of new features in

the software or in the operating environment;

 - stability - an attribute indicating the constancy of the

structure and the risk of its modification;

 - testability is an attribute that demonstrates the efforts

to perform validation and verification in order to detect

inconsistencies in requirements, as well as the need for

software modification and certification;

 - consistency is an attribute that shows the

correspondence of this attribute to conventions, rules, and

regulations of the standard.

 6. Portability - the set of indicators that point to the

ability of the software to adapt to the new environment of the

runtime. The medium may be organizational, hardware and

software. Therefore, the transfer of software into a new runtime

environment can be associated with a set of actions aimed at

ensuring its functioning in an environment different from the

 126

environment in which it was created taking into account new

programmatic, organizational and technical capabilities.

 Portability includes sub-characteristics:

 - adaptivity - an attribute that determines the effort

spent on adapting to different environments;

 - customizability (ease of installation) - an attribute that

determines the necessary effort to run this software in a special

environment;

 - coexistence - an attribute that determines the

possibility of using special software in the environment of the

current system;

 - replaceability - an attribute that provides the

possibility of interoperability when working together with

other programs with the necessary installation or adaptation of

software;

 - consistency - an attribute that indicates compliance

with standards or software transfer agreements.

 Software quality metrics

 At present, the system of metrics has not yet been fully

developed in software engineering. There are different

approaches to determining their set and methods of

measurement.

 The measurement system includes metrics and

measurement models that are used to quantify software quality.

 When determining the software requirements, the

external characteristics and their attributes (sub-characteristics)

corresponding to them are defined, which determine the

different aspects of product management in a given

environment. For a set of quality characteristics of software,

given in the requirements, the relevant metrics, models for their

evaluation and the range of values of measures for measuring

individual quality attributes.

 According to the standard, metrics are defined by the

software attribute measurement model at all stages of the LC

 127

(intermediate, internal metric) and especially during the testing

or operational phase (external metrics) of the product.

 Let us dwell on the classification of software metrics,

the rules for conducting metric analysis and the process of

measuring them.

 Types of Metrics
 There are three types of metrics:

● software product metrics that are used to measure its

characteristics - properties;

● process metrics that are used to measure the process

property of the product creation process.

● usage metrics.

 The metrics of the software product include:

● external metrics that indicate product properties visible

to the user;

● internal metrics that denote properties visible only to

the development team.

External product metrics are metrics:

● product reliability, which serves to determine the

number of defects;

● functionality, through which the presence and

correctness of the implementation of functions in the product;

● tracking, by which the resources of the product are

measured (speed, memory, environment), the applicability of

the product, which help determine the degree of availability for

study and use;

● cost, which determines the cost of the created product.

Internal product metrics include:

● size metrics needed to measure a product using its

internal characteristics;

● complexity metrics required to determine the

complexity of the product;

 128

● style metrics that serve to define approaches and

technologies for creating individual components of a product

and its documents.

Internal metrics allow you to determine product performance

and are relevant to external metrics.

External and internal metrics are specified at the stage of the

formation of software requirements and are the subject of

planning and managing the achievement of the quality of the

final software product.

 The development time, the number of errors found

during the testing phase, etc. can be as the process metrics.

Practically the following process metrics are used:

● total development time and separately time for each

stage;

● modification time;

● time of work on the process;

● number of errors found during inspection;

● cost of quality control;

● the cost of the development process.

 Usage Metrics serve to measure the degree of

satisfaction of the user's needs when solving his tasks. They

help to evaluate not the properties of the program itself, but the

results of its operation - the operational quality. An example

can serve - the accuracy and completeness of the

implementation of user tasks, as well as the spent resources

(labor, productivity, etc.) to effectively solve the tasks of the

user. The user's requirements are assessed using external

metrics.

 Standard assessment values of quality indicators

 Evaluation of software quality according to the four-

level model of quality begins with the lower level of the

hierarchy, i.e. from the most elementary property of the

evaluated attribute of the quality index according to the

established measures. At the design stage, the values of the

 129

evaluation elements for each attribute of the indicator of the

analyzed software included in the requirements.

 Quality metrics are used in assessing the degree of

testability with the help of data (failure-free work, the

feasibility of functions, the usability of user interfaces,

databases, etc.) after testing software on a variety of tests.

 MTBF as an attribute of reliability determines the

average time between the emergence of security threats and

provides a hard-to-measure estimate of damage that is caused

by appropriate threats. Very often the evaluation of the

program is based on the number of lines. When comparing two

programs that implement one application task, a short program

is preferred, as it is created by more qualified personnel and

has fewer hidden errors and is easier to modify. At the cost, it

is more expensive, although the time for debugging and

modification takes more. Those. the length of the program can

be used as an auxiliary property for comparing programs,

taking into account the same developer skills, a single style of

development and a common environment.

 Based on the measurement of quantitative

characteristics and the examination of qualitative indicators

using weighting factors that neutralize different indicators, the

final evaluation of product quality is calculated by summing

the results by individual indicators and comparing them with

the reference software indicators (cost, time, resources, etc.).

 Ultimately, the result of the quality assessment is a

criterion for the effectiveness and appropriateness of applying

design methods, tools, and techniques for evaluating the results

of creating a software product at the stages of the LC.

 To express an assessment of the values of quality

indicators, a standard is used in which the following methods

are presented: measuring, registration, calculation, and expert

(and combinations of these methods).

 130

 The measuring method is based on the use of measuring

and special software to obtain information about the

characteristics of software, for example, determining the

volume, the number of lines of code, operators, the number of

branches in the program, the number of entry points (output),

reactivity, etc.

 The registration method is used to calculate the time,

the number of failures or failures, the beginning and the end of

the software during its execution.

 The calculation method is based on statistical data

collected during testing, operation and maintenance of the

software. Calculation methods assess the reliability, accuracy,

stability, reactivity, etc.

 The expert method is carried out by a group of expert-

specialists who are competent in solving this task or the type of

software. Their evaluation is based on experience and intuition,

and not on immediate results of calculations or experiments.

This method is carried out by viewing programs, codes,

accompanying documents and contributes to a qualitative

assessment of the created product. For this purpose, controlled

characteristics are established that are correlated with one or

more quality indicators and are included in expert

questionnaires. The method is used in assessing such indicators

as the analyticity, documentation, structuring of software, etc.

 PS quality management

 Quality management refers to the totality of the

organizational structure and responsible persons, as well as the

procedures, processes, and resources for planning and

managing the achievement of the quality of the PS. Quality

Management - SQM (Software Quality Management) is based

on the application of standard provisions for quality assurance -

SQA (Software Quality Assurance).

 131

 The objective of the SQA process is to ensure that

products and processes are consistent with the requirements,

consistent with the plans and include the following activities:

● implementation of standards and relevant procedures

for the development of the PC at the stages of the LC;

● assessment of compliance with these standards and

procedures. The quality guarantee is as follows:

● check consistency and feasibility of plans;

● harmonization of intermediate work products with

planned indicators;

● verification of manufactured products to specified

requirements;

● analysis of applied processes for compliance with the

contract and plans;

● agreement with the customer environment and product

development methods;

● check the accepted metrics of products, processes, and

methods of measuring them in accordance with the approved

standard and measurement procedures.

 The purpose of the SQM management process is

monitoring (systematic control) of quality to ensure that the

product will satisfy.

 Quality engineering includes a set of methods and

activities through which software products are tested to meet

quality requirements and are supplied with the characteristics

required by the software requirements.

 Quality system (QS) is a set of organizational structures,

methods, activities, processes, and resources for implementing

quality management. Two approaches are used to ensure the

required level of software quality. One of them is focused on

the final software product, and the second - in the process of

creating a product.

 Planning for quality is an activity aimed at defining

goals and requirements for quality. It encompasses

 132

identification, setting goals, quality requirements, classification

and quality assessment. A calendar plan is drawn up for the

analysis of the state of development and the subsequent

measurement of the planned indicators and criteria at the stages

of the LC.

 Models of reliability assessment

 Of all the areas of software engineering, the reliability

of the PS is the most explored area. It was preceded by the

development of the theory of reliability of technical means,

which had an impact on the development of reliability of the

substation. PS software developers dealt with PS reliability,

trying to provide reliability that satisfies the customer by

various system means, as well as theorists who, studying the

nature of PS functioning, created mathematical reliability

models that take into account different aspects of PS operation

(errors, failures, failures, etc.) and allowing to estimate real

reliability. As a result, the reliability of the PS was formed as

an independent theoretical and applied science.

 The reliability of complex PCs differs significantly

from the reliability of the equipment. Data carriers (files,

server, etc.) have high reliability, records on them can be stored

for a long time without destruction since they are not subject to

physical destruction.

 From the point of view of applied science, reliability is

the ability of the PS to retain its properties (reliability, stability,

etc.), Convert raw data to results for a certain period of time

under certain operating conditions. The decrease in reliability

of the substation occurs due to errors in requirements, design,

and implementation. Failures and errors, depending on their

performance and time in the programs when they are executed

for a certain period of time.

 For many systems (programs and data), reliability is the

main target function of implementation. To some types of

systems (real-time, radar systems, security systems, medical

 133

equipment with built-in programs, etc.) high-reliability

requirements are imposed, such as the absence of errors,

reliability, safety, etc.

 Thus, the evaluation of the reliability of the PS depends

on the number of remaining and not eliminated errors in the

programs. During the operation of the MS, errors are detected

and eliminated. If no new or at least new errors are introduced

in the correction of errors, then it eliminates the reliability of

the PS continuously during operation. The more intensive the

operation, the more errors are detected and the reliability of the

system grows faster and, accordingly, its quality.

 Reliability is a function of the errors remaining in the

MS after commissioning it. PS without errors is absolutely

reliable. But for large programs, absolute reliability is almost

unattainable. The remaining undetected errors manifest

themselves from time to time under certain conditions (for

example, with a certain set of initial data) to maintain and

operate the system.

 To assess the reliability of the PS, statistical indicators

such as probability and time of trouble-free operation, the

possibility of failure and frequency (intensity) of failures are

used. Since only errors in the program that can not be

eliminated are considered as the causes of failures, the PS

should be classified as a class of non-renewable systems.

 Reliability assurance factors include:

● risk as a combination of threats leading to adverse

consequences and damage to the system or environment;

● threat as a manifestation of instability that violates the

security of the system;

● risk analysis - the study of the threat or risk, their

frequency, and consequences;

● integrity - the ability of the system to maintain the

stability of the work and not have a risk.

 134

 Risk converts and reduces reliability properties, since

the detected errors can lead to a threat if the failures are of a

frequency nature.

 Basic concepts in reliability issues of PS

 Formally, the reliability assessment models for PS are

based on reliability theory and mathematical apparatus with the

assumption of some constraints affecting this estimate. The

main source of information used in reliability models is the

testing, operation of the PS and various kinds of situations that

arise in them. Situations are generated by the occurrence of

errors in the MS and require their elimination to continue

testing.

 Classification of models of reliability

 As is known, at the given time a large number of

reliability models for PS and their modifications have been

developed. Each of these models defines a reliability function

that can be calculated by assigning to it the relevant data

collected during the operation of the MS. The main data are

failures and time. Other additional parameters are associated

with the type of MS, environmental conditions and data (fig.

11.3).

 In view of the wide variety of reliability models, several

approaches to the classification of these models have been

developed. Such approaches are generally based on a history of

errors in the tested and tested MS at the LC stages. One

classification of software reliability models is the Hatch

classification. It proposes the division of models into

predictive, measurement and evaluation.

 Predictive reliability models are based on measuring the

technical characteristics of the created program: length,

complexity, the number of cycles and the degree of their

nesting, the number of errors on the page of program operators,

etc.

 135

 For example, the Motley-Brooks model is based on the

length and complexity of the program structure (number of

branches, cycles, nesting cycles), the number and types of

variables, and interfaces. In these models, the length of the

program serves to predict the number of errors, for example,

for 100 program operators, you can simulate the failure rate.

 Fig. I.11.3. Models of reliability

 Measuring models are designed to measure the reliability

of software that works with a given external environment. They

have the following limitations:

● the software is not modified during the reliability

properties measurement period;

● the detected errors are not corrected;

● reliability measurement is performed for a fixed

software configuration.

 A typical example of such models are the Nelson and

Ramamurti Bastani and others models. The Nelson reliability

assessment model is based on the fulfillment of the k-runs of

the program in testing and allows determining reliability. Thus,

this model considers the quantitative data on the runs carried

out.

 Evaluation models are based on a series of test runs and

are conducted during the testing phases of the PC. The test

 136

environment is determined by the probability of failure of the

program when it is executed or testing.

 These types of models can be used in the LC stages. In

addition, the results of predictive models can be used as inputs

to the evaluation model.

 Another kind of classification of models suggested by

Goel, according to which the reliability models are based on

failures and are divided into four classes of models:

● without counting of errors;

● with calculation of failures;

● with overseeding of errors;

● models with a choice of input ranges.

 Models without error counting are based on measuring

the time interval between failures and allow to predict the

number of errors remaining in the program. After each failure,

reliability is evaluated and the average time until the next

failure is determined. Such models include the models of

Jelinsky and Moranda, Shick Woolverton, and Linwood-

Verrall.

 Models with calculation of failures are based on the

number of errors detected at specified intervals of time. The

occurrence of failures as a function of time is a stochastic

process with a continuous intensity, and the number of failures

is a random value. The detected errors are usually eliminated

and therefore the number of errors per unit time is reduced.

This class of models includes Schumann, Schick-Woolverton,

Poisson model, and others.

 Models with overseeding error are based on the number

of eliminated errors and overseeding made into an artificial

error program, the type and number of which are known in

advance. Then the ratio of the number of remaining predicted

errors to the number of artificial errors is determined, which is

compared with the ratio of the number of detected real errors to

the number of artificial errors detected. The result of the

 137

comparison is used to assess the reliability and quality of the

program. When making changes to the program, repeated

testing and reliability assessment are carried out. This approach

to the organization of testing is cumbersome and is rarely used

due to the additional amount of work involved in the selection,

implementation, and removal of artificial errors.

 Models with a choice of the input value range are based

on generating a plurality of test samples from the input

distribution, and reliability estimation are performed based on

the received failures based on the test samples from the input

area. This type of model includes the Nelson model and others.

I.12. ASSEMBLY, DOCUMENTATION AND

MAINTENANCE OF SOFTWARE

 Software documentation

 In the course of working on a project to create any

complex software system, a large number of project documents

are created. Its main purpose is to coordinate the joint actions

of a large number of developers for more or less long periods

of time - during the initial development of the system, in the

process of performing work on its modification, during the

escort. The structure of project documentation in most projects

is almost the same - these are the requirements for a system of

different levels (system, functional and structural), a

description of its architecture, program code, tests and

documents accompanying the implementation process

(installation guides, customization, user manuals).

 Since the verification of the software system (in the

optimal case) is performed throughout the development life

cycle by a sufficiently large team of developers, test

documentation is created during testing. Its main purpose, in

addition to synchronizing the actions of testers at different

levels, is to ensure that testing is performed in accordance with

the selected criteria for assessing the quality and that all aspects

 138

of the system's behavior are tested. Also, the test

documentation is used when making changes to the system to

verify that both the old and new functionality is working

correctly (Figure 1).

 Before the verification manager begins testing, a

document is created, called a verification plan (or test plan, but

this is not the same as a test-plan). The test plan is an

organizational document that contains requirements for how

testing should be performed in this particular project. It defines

common approaches to the harmonization of development and

verification processes, defines verification methods, the

composition of the test documentation and its relationship with

the developer documentation, the timing of the various

verification stages, the various roles and qualifications of the

testers required to perform all testing work, the requirements

for testing tools and test stands, as well as assess risks and

provide ways to overcome them.

 This document also defines requirements for the test

documentation itself - test requirements, test plans, test reports.

 According to these requirements for the system and

functional requirements, test developers create test

requirements-documents that detail what aspects of the

system's behavior should be tested. Based on the description of

the architecture, low-level test requirements are created, which

describe aspects of the behavior of a particular software

implementation of the system that needs to be tested (fig.

I.12.1).

 Based on test requirements, test designers create test

plans - documents that contain a detailed step-by-step

description of how test requirements should be tested.

 139

 Fig. I.12.1. Documentation accompanying the verification process

 Based on the test requirements and design

documentation of the developers, a test environment is also

created, which is necessary for correct execution of tests on test

stands - drivers, stubs, setup files, etc.

 As a result of the tests, testers create test reports (they

can be created either automatically or manually) that contain

information about what inconsistencies in the requirements

were identified as a result of testing, as well as coverage

reports, containing information about what percentage of the

system's software code was involved as a result of testing.

 By using nonconformities generate reports on problems

- documents that are sent for analysis to the development team

in order to determine the cause of the inconsistency.

 140

 Changes to the system are made only after a

comprehensive study of these reports and the localization of

problems that have caused a non-compliance with the

requirements. To ensure that the process of change does not get

out of hand and any change is recorded (and associated with

the tests that detected the problem), a request is made to change

the system. After all the work on the change request has been

completed, the testing process is repeated until an acceptable

level of software system quality is achieved.

 The formats of various test documents are described in

the IEEE 1012 and IEEE 829.

 All documents must have unique identifiers and be

stored in a single database of project documents. This will keep

the controllability of the testing process and maintain the

required quality of the system being developed.

Software maintenance

 Software maintenance – is a set of actions to ensure the

operation of the software, as well as to make changes in the

event of errors in the process of operation, to adapt the

software to the new operating environment, as well as to

increase productivity or improve other characteristics of the

software. Maintenance (in accordance with ISO / IEC 12207

and ISO / IEC 14764) is considered a modification of the

software product during operation provided that the integrity of

the product is maintained.

 The "Software maintenance" knowledge area consists

of the following sections:

 Basic Concepts,

 Process Maintenance,

 Issue in Software Maintenance,

 Techniques for Maintenance.

 Maintenance is considered from the point of view of

satisfying the requirements to the created software, the

 141

correctness of its implementation, the learning processes and

the operational tracking of the support process.

 The basic concepts describe the basic definitions and

terminology, approaches to the evolution and maintenance of

software, as well as to assess the cost of maintenance, etc..

 The main concepts can be referred to the JV PO (ISO /

IEC 12207 standard) and documentation. The main purpose of

this area of knowledge is to implement a ready-made software

system, fix the errors that occur during the execution,

investigate the causes of errors, analyze the need to modify the

system in order to eliminate errors, estimate the cost of work to

carry out changes in functions and the system as a whole. The

problems associated with increasing the complexity of the

product with a large number of changes and methods for

overcoming it.

 Software maintenance includes: models of the

maintenance process and planning of the activities of people

who are running the software, checking the correctness of its

implementation and making changes to it. The accompanying

process according to ISO / IEC 14764 is carried out by:

 adjustments, i. product changes to eliminate detected

errors or unrealized tasks;

 adaptation, i.e. product settings in changed operating

conditions or in a new environment for running this software;

 Improvements, i. evolutionary changes in the product to

improve performance or maintenance level;

 software checks to find and fix errors found during

system operation.

 Key issues in software maintenance. The main of these

issues are

 - managerial,

 - measuring,

 - cost.

 142

 The essence of management issues is the control of

software in the process of modification, improvement of

functions and avoidance of system performance degradation.

Measuring issues are related to the evaluation of the

characteristics of the system after its modification, as well as

re-testing and evaluation of quality indicators. Cost issues are

related to the evaluation of software maintenance costs,

depending on its type, staff qualifications, platform, etc.

Knowing these factors often allows you to reduce costs.

 Software evolution. A well-known software expert J.

Lehman (1970) suggested that support should be considered as

an evolutionary development of software systems since the

system commissioned is not always complete; it needs to be

changed during the life of the system. As a result, the software

system becomes more complex and poorly managed; the

problem of reducing its complexity arises. Technologies for

software evolution include re-engineering, reverse engineering,

and refactoring.

 Reengineering is the improvement of legacy software

through its reorganization or restructuring, as well as by

reprogramming individual elements or adjusting parameters to

another platform or execution environment while maintaining

the convenience of its maintenance.

 Reverse engineering consists of restoring the

specification (call graphs, data streams, etc.) from the received

system code to monitor it at a higher level. Identification of

software components and connections between them is restored

to ensure reprogramming of the system to a new form.

 Most often, reverse engineering is used after many

changes have been made to the software code and it has

become unmanageable.

 Refactoring is the reorganization of code to improve the

characteristics and quality indicators of object-oriented and

component programs without changing their behavior. This

 143

process is realized by gradually changing individual operations

on texts, interfaces, the programming and executing

environment, and setting up or making changes to the software

support tools. If the form of the existing system is preserved

when changing, then refactoring is one of the variants of

reverse engineering.

 Software configuration management

 Software Configuration Management (SCM) consists in

the identification of the system components, determination of

the functional and physical characteristics of the hardware and

software for controlling the introduction of changes and tracing

the configuration throughout the LC. This control corresponds

to one of the auxiliary processes of the LC (ISO / IEC 12207),

carried out by the technical and administrative management of

the project; reports on the changes made to the configuration

and the degree of their implementation are compiled, and the

compliance of the changes made with the specified

requirements.

 System configuration - the composition of the functions,

software, and hardware of the system, possible combinations of

them, depending on the availability of equipment, system-wide

tools identified in the technical documentation of the system,

and product requirements.

 The software configuration includes a set of functional

and technical characteristics of the software, specified in the

technical documentation and implemented in the finished

product. This is a combination of different elements of the

product together with the specified assembly and adjustment

procedures for the environment in accordance with the purpose

of the system. Examples of configuration items include the

development schedule, project documentation, source and

executable code, a component library, installation and

deployment instructions.

 144

 The knowledge area "Software Configuration

Management" consists of the following sections:

 Management of SCM Process,

 Software Configuration Identification,

 Software Configuration Control,

 Software Configuration Status Accounting,

 Software Configuration Auditing,

 Software Release Management and Delivery.

 Configuration management. This is an activity to

control the evolution and integrity of the product when

identifying, monitoring changes and providing reporting

information regarding the configuration.

Include:

 systematic tracking of changes to individual

configuration components, performing an audit of changes and

automated control over making changes to the configuration of

the system or software;

 support for the integrity of the configuration, its audit

and the provision of changes to configuration items;

 a configuration audit to verify the availability of the

software or hardware developed and to reconcile the

configuration version with the specified requirements;

 tracing changes to the configuration during the

maintenance and operation phases of the software.

 Identification of software configuration consists in

documenting the functional and physical characteristics of

software configuration elements, as well as in the design of

technical documentation for software configuration items.

 Software configuration monitoring consists of

coordinating, approving or discarding implemented changes in

configuration elements after formal identification, as well as in

analyzing incoming components in the configuration and

matching their identification.

 145

 Accounting of the status or software configuration

status is carried out with the help of a set of measures to

determine the degree of configuration change received from the

developer, as well as the correctness of the changes made to the

configuration of the software when it is accompanied.

Information and quantitative indicators are accumulated in the

relevant database and are used in configuration management,

reporting, quality assessment and other processes.

 Configuration audit is an activity that is performed to

evaluate a product and processes for compliance with

standards, instructions, plans, and procedures. Audit

determines the degree to which the configuration element

meets the specified functional and physical (hardware)

characteristics of the system. Based on the functional and

physical audit of the configuration, the baseline of the

manufactured product.

 Software version control is the tracking of an existing

version of the configuration item; assembly of components;

creating new versions of the system based on existing ones by

making changes to the configuration; the coordination of the

product version with the requirements and the changes made at

the LC stages; providing quick access to information about the

configuration elements and the system to which they relate.

Release management covers the identification, packaging and

transfer of product elements and documentation to the

customer. The following basic concepts are used.

 Baseline - formally designated set of software elements,

fixed in the stages of the software center.

 The software library is a controlled collection of

software, and documentation objects designed to facilitate the

development, use, and maintenance of software.

 Software assembly – is the integration of the correct

software elements and configuration data into a single

executable program.

 146

PART II

II.1. PRACTICAL METHODS OF WORK IN

MICROSOFT PROJECT ENVIRONMENT

II.1.1. Creating and planning a project in Microsoft Project

Theoretical information

 The Microsoft Office Project window consists of the

following elements:

1. the line of the menu;

2. toolbars;

3. input line;

4. representations panel;

5. working area;

6. status line.

 The line of the menu, toolbars, and status bars are

standard for all Windows applications, and the way of working

with them is the same as in Microsoft Office.

 The input line is intended for input and editing of data

into table cells (like the formula line in Excel).

 The representations panel is used to switch between

the views of the window's working area. All data about the

project is stored in a single database consisting of a large

number of fields. A view is a way to display a portion of the

related data from a common project database. The system

implemented a large number of views - Gantt chart, network

graph, calendar, resource schedule, etc. If you want, you can

change the standard views by adding or removing the data

fields displayed on their tables. The first time you launch the

program, the representations panel may be absent. To display

it, select the View/Representations panel. Switch between

views by clicking on the icon of the desired view.

 The workspace is intended for displaying images. It

can contain tables, charts, graphs, forms and used for both:

viewing and editing project data. To create a new project,

 147

select File / New. A blank project with a blank database will be

created.

 Features of Task Scheduling in the Microsoft

Project System

There are several types of project work:

1. ordinary work (hereinafter referred as the word work or

task);

2. milestone;

3. phase;

4. the total project task.

 The work indicates some actions aimed at the

execution of some part of the project. The milestone is a zero-

length work. Milestones are designed to fix the control points

in the project plan, in which important event management

events take place. For example, the completion of one stage of

work and the beginning of another. Usually, milestones are

used to indicate the beginning and end of the project, as well as

to indicate the end of each phase.

 The Phase is a composite work consisting of several

works and completing by a milestone. The phase describes a

certain logically completed stage of the project and may consist

of both: works and other phases.

 The following rule is adopted in order to delimit work

and phases in the system. All works are divided into levels that

specify their hierarchy. Any work with subordinate work of the

lower level is a phase. All other works are not phases.

 The overall task of the project is an artificially created

system of work, the duration of which is equal to the duration

of the whole project. This work is used to compute, display and

analyze aggregated project data.

 Связь между задачами определяет, каким образом

время начала или окончания одной задачи влияет на время

окончания или начала другой. The connection between tasks

 148

determines how the start or end time of one task affects the end

time or the start of another.

There are four types of connections in Microsoft Project:

1. end-to-start;

2. start-to-start;

3. end-to-end;

4. start-to-end.

 An end-to-start connection is the most common case of

a link between works. With such a connection, work B can't

start earlier than the work A.

 A start-to-start connection means that work B can't

begin until work A begins. With this connection, tasks that can

be run in parallel are combined. For example, training the

personnel to work with the program and entering data into the

program can take place simultaneously, but data entry can't

begin until staff training begins.

 The end-to-end connection denotes the dependency at

which task B can't end until task A is completed. Usually, this

work combines work that is performed simultaneously, but one

can’t end before the other. For example, commissioning a

program and testing it and debugging can be done in parallel.

During the commissioning process, staff training, preparation,

and data entry take a place. However, commissioning can't be

completed until the testing and correction of errors found in the

program is completed.

 A start-to-end connection denotes a relationship in

which work B can't end until work A begins. For example, A is

the commencement of a program in commercial operation, the

beginning of which is scheduled for a strictly defined date. B -

pilot operation of the program, which can't be completed until

the program is put into commercial operation. Moreover, an

increase in the duration of Problem A does not entail an

increase in the duration of Problem B.

 149

 The list of tasks begins with the separation of the

stages of the project. Each phase will correspond to a phase. If

necessary, especially for large projects, the stages

can be divided into smaller stages. In this case, the phase will

consist of smaller phases. When the list of stages is ready, a list

of tasks to be performed at each stage is drawn up. As the last

work of the stage, the problem of zero length, which

corresponds to the milestone, is used.

 Entering a list of project tasks is performed in any of

the views that have a table for data entry. Best for this is the

Gantt Chart, which, in addition to the table, shows the project's

calendar schedule.

 To enter a task, simply enter the name of the task in the

column Name of the task in the empty row of the table. By

default, the duration of a new task is taken equal to one day,

and the start date of the task is the start date of the project. A

question mark is displayed next to the duration value, which

indicates that this duration value is preliminary and is set by

the system. After the appointment of the duration of the user,

the question mark disappears.

 Creation of connections between tasks is carried out

both: directly in the calendar schedule, and in the data entry

table.

 On the calendar chart, you should point the mouse on

the task icon, click the left mouse button and, without releasing

it, move the pointer to the icon of another task, and then release

the mouse. A link will be established between them.

Binding tasks in the data entry table is performed using the

Predecessor column, which contains the numbers of the

immediately preceding tasks, separated by a semicolon.

 The task duration can be assigned in two ways::

1. change the value in the Duration column of the data

entry table;

 150

2. double-click on the task line to open the Task

Information window and on the General tab, set the duration

value..

 By default, the duration is set in days. However, you

can change the unit of measure by specifying it next to the

numeric value. For example, 10d means 10 days, 10h - 10

hours, 10m - 10 minutes, 10month - 10 months.

Performance of work

1. Let's start drawing up a plan for our project to

add the first task, which will be a milestone, for this, we set the

task duration of 0 days. Such a task is by default a milestone.

You can also assign any task to a milestone through the details

menu in the Advanced tab.

2. Then add stages that will summarize the amount

of work.

 Fig II.1.1. Stages of work

3. We will add the work that will be included in

these stages: using the insert key add new tasks after the

training phase, then we select all the added tasks and make

them subtasks of the preparation stage with the appropriate

button in the Task tab.

 151

 Fig II.1.2. Tasks and subtasks

4. We also add subtask to the stage of execution, in it we

will mark the milestone of the beginning of work, and after this

the milestone stage of the ordering

Fig II.1.3. Stages, tasks and subtasks

5. Now we can associate completion of tasks with the

beginning of the following

Fig. II.1.4 Binding tasks

 152

6. It is clear that in the preparation stage all subtasks go

one by one, so they can be highlighted and click on the same

button, and they will contact each other

Fig. II.1.5 Binding tasks (continued)

7. Let's do the same with the execution of the work, but

there we can combine the development of logic and interface,

for this, with a double click, click on the development of the

interface, and in the tabs of predecessors, we will change the

type of the previous logic from "end-to-start" to "start-to-start",

and in testing will add in the predecessors the development of

logic with the type of "end-start"

Fig. II.1.6 Parallel tasks

 153

Fig. II.1.6a. Parallel tasks (continued)

8. After these operations planning will look like this:

Fig. II.1.7 The result of planning

9. We set the time for each task and include the total

project task in a tab format that will show the total cost of our

entire project.

Fig. II.1.8. Determining the time of the tasks

 154

10. Let's turn to Gantt charts with tracking, in which we can

see the critical path of our project.

Fig. II.1.9. Gantt Chart with Tracking

11. Change the scale on the timeline, click on the calendar,

select "Zoom" and select "All project" in it.

Fig. II.1.10. Calendar on Gantt chart with tracking

 155

12. Add the executors (employees) the necessary resources

(material) and expenses (finance), we will go to the tab

resources:

Fig. II.1.11. Add resources to the project

We can choose one of the three types of resources for each

item:

 - Labor - executors (people who work and receive salary);

 - Material - resources required to perform work (materials,

etc.);

 - Costs - cash expenses.

Fig. II.1.12. Project resources

 156

We also specified units of measurement for mat.resources,

their cost and salary of employees.

13. Next, we distribute resources by assignments. Returning

to the Gantt chart, select the Resource tab, then Assign

Resources.

 Fig. II.1.13. Distribution of resources by assignments

In milestones, we appoint only (!) workers who start work.

 Fig. II.1.14. Distribution of resources for tasks and subtasks

 157

 Fig. II.1.14a. Distribution of resources for tasks and subtasks

(continued)

 158

II.1.2. Risk management in Microsoft Project

 Performance of work

Part 1: Introduction and identification of risks

 1. Open the outline of your project and go to the Gantt

Chart view.

 Fig. II.1.15. Gantt Chart view

 2. Next, we need to create a table for analysis and risk

management. Right-click on the intersection of the row and

column header and select More Tables from the shortcut

menu.

 Fig. II.1.16. Gantt Chart. More Tables

 159

 3. We will not use the template, create a new table,

click the New button.

 Fig. II.1.17. Creation a new table

 4. Name the Risk Analysis table and add the following

fields: ID. (task sequence number), Name (to understand which

task the risks are), and the Text1 field (to identify

opportunities) and the Text2 field (for threat identification). Do

not forget to include the Show in menu option to make it

easier to navigate to this table.

 Fig. II.1.18. Risk Analysis table

 160

 5. Click OK and click Apply again to go directly to our

created table. Adjust the width of the columns so that you can

work with it. In this table you can already perform the

identification of Opportunities and Threats.

 Fig. II.1.19. Risk Analysis table

 6. In order not to introduce new opportunities and

threats each time, these two fields will be supplemented with

certain parameters that will allow us to re-use the already

identified opportunities and risks. To do this, move the mouse

cursor over the header of the Features column, right-click and

select Custom Fields in the context menu.

 Fig. II.1.20. Custom Fields

 161

7. Before you open the Custom Fields dialog box.

Rename the Text1 field to CAPPABILITIES, and the Text2

field in THREATS. Then, for the CAPABILITY field, enable the

Substitution option, do the same for the THREATS field.

 Fig. II.1.21. Threats Fields

 8. Then, in succession, click the Lookup button for the

CAPABILITY field and for the THREATS field. In the dialog

that appears, expand Display order for the lookup table and

switch to Ascending. That is, all the input values will

automatically be sorted in ascending order.

 9. Then expand the Input Options and enable the

option to allow the addition of additional elements to the fields.

That is, all the opportunities or threats that we enter into these

fields will be automatically added to the list, sorted in

ascending order and will be available for reuse.

 Fig. II.1.22. Threats Fields

 162

 10. Close the Custom Fields dialog box and return to

the project. Now we can identify the opportunities and threats

that will be automatically added to the list. For example, for

task processing task, we identify the possibility - Having a job

processing plan will shorten preparation time. And for the task

of Developing a project interface as a threat identify the lack

of a specialist with the proper qualifications can lead to

incorrect evaluation of the project.

 Fig. II.1.23. Identification of the opportunities

Part 2: Classification of risks

 1. In our practical work, I will use the standard risk

structure. So, move the cursor to the intersection of the row and

column header and select More tables from the context menu.

 2. Add the Code field of the directory1. (Structure code

1 in older versions of Office) and click Ok to apply and add a

new column.

 Fig. II.1.24. Identification of the opportunities

 163

3. On the heading of the Outline field1 box, right-click and

select Custom Fields. In the dialog that opens, first of all,

rename the Outline Encoding field1 to the SDRISK (structural

risk decomposition). And then click the Lookup button.

 Fig. II.1.25. Custom Fields

4. In the Lookup dialog, first open the + (plus) icon for

the Code Mask value and click the Edit Mask button. This is

necessary to add another layer of the structure

 Fig. II.1.26. Edit Mask

 164

5. Close this dialog box and enter our structural

decomposition of the risks. Do not forget to use the structure

buttons, in this dialog they are called, respectively, the Lead

and Indent.

 Fig. II.1.27. Lead and Indent

 6. You can close this dialog box and the Custom Fields

dialog box. Now we are ready to classify all of our identified

risks (OPPORTUNITIES and THREATS).

 Fig. II.1.28. Opportunities and Threats

 165

 7. In my example, two risks were identified.

Opportunity - Having a plan ... and a threat Lack of a specialist

... Both risks are related to organizational risks associated with

resources.

 8. Further in this table we need to add one more column

for the RISK OWNER. To do this, move the cursor to the

intersection of the row and table header, right-click and select

Other tables.

 Fig. II.1.29. Other tables

9. In the dialog box, select the RISK ANALYSIS table

and click the Change button. Next, in the dialog box that

opens, immediately after the THREATS line, add the Text3

field and define the title RISK OWNER.

 Fig. II.1.30. Risk owner

 166

 10. Click OK and immediately apply this table. In this

field you can manually enter the risk owners, but we will make

a reference with universal roles.

 11. In order to make a directory with a list of risk

owners, simply move the mouse cursor over the column header

of the RISK OWNER and select the Custom Fields command.

In the opened window, replace the name of this field with the

RISK OWNER and click the Lookup button and enter the

following values: Corporate management, Organization

management, Senior user, Senior supplier, Project manager,

Internal project control and Project support.

 Fig. II.1.31. Custom Fields

12. After that, you can close this window and click OK twice

to return to the view. For the task of processing the project task

by the risk owner, I will assign the Project Support, and for the

task Developing an Interface ... Management of the

organization.

 167

Part 3: Qualitative Risk Analysis

 1. Use the Risk Analysis table. Then move the cursor to

the header of any column, right-click and select the Custom

Fields command in the context menu. Select the type of the

Number field. And then sequentially rename the fields:

Number1 - PROBABILITY (POSSIBILITIES), Number 2 -

INFLUENCE (POSSIBILITIES), Number3 - IMPORTANCE

(CAPABILITIES), Number4 - PROBABILITY (THREATS),

Number5 - EFFECTS (THREATS) and Number6

IMPORTANCE (THREATS).

 Fig. II.1.32. Rename Custom Fields

 2. Now select the PROBABILITY (OPPORTUNITY)

box, click the Lookup button and enter the following values: 1

- VERY LOW; 2 - LOW; 3 - AVERAGE; 4 - HIGH and 5 -

VERY HIGH.

 168

 Fig. II.1.33. Probability (Opportunity) box

 3. Do the same for the EFFECT (OPPORTUNITY)

field.

 4. Go to the IMPORTANCE (OPPORTUNITIES) box

and click the Formula button. In the window that opens, enter

the formula [PROBABILITY (OPPORTUNITY)] * [EFFECT

(OPPORTUNITY)].

 Fig. II.1.34. Importance (Opportunity) box

 169

 5. Now, for the IMPORTANCE (OPPORTUNITIES)

field, configure the graphic indicators. To do this, click the

Graphic Indicators button and define it as follows:

 Fig. II.1.35. Graphic indicators

 6. Note that if you choose to check the field from the

drop-down list, then the checks "within" are not, nevertheless,

we use this check, since it works, as opposed to checking

"inside".

 Fig. II.1.36. Graphic indicators (continued)

 7. Now, in order not to enter values for fields

PROBABILITY (THREATS), EFFECT (THREATS), I simply

copy them from the corresponding fields of possibilities. To do

 170

this, highlight the PROBABILITY (THREATS) field and click

the Import Field button. Then select the appropriate field.

Repeat for the EFFECT (THREATS) field.

 Fig. II.1.37. Effect (Threats) field

 8. Now select the IMPORTANCE (THREATS) field

and enter the formula [PROBABILITY (THREATS)] *

[EFFECT (THREATS)].

 Fig. II.1.38. Formula

 171

 9. Next, configure the graphic indicators for this field.

We also use import conditions from the field IMPORTANCE

(OPPORTUNITIES).

 Fig. II.1.39. Use import conditions

 10. But if they are threats, then the graphical indicators

will be a minus sign
 .

 Fig. II.1.40. Minus as a graphical indicators

 11. We have to adjust the table, and we will be ready to

perform a qualitative risk assessment. Close the Custom Fields

dialog box. Then move the mouse cursor to the upper right

corner of the table, right-click and select More tables in the

context menu.

 172

 12. In the window that opens, select RISK ANALYSIS

and click the Change button.

 13. In the Definition of Table ... dialog box, highlight

the THREATS line and click. Add a row ... and add the

PROBABILITY (OPPORTUNITY), EFFECT

(OPPORTUNITIES), and IMPORTANCE

(OPPORTUNITIES) fields sequentially.

Fig. II.1.41. Probability (Opportunity), Effect (Opportunities),

and Importance (Opportunities)

 14. Now select the row RISK OWNER and add the

PROBABILITY (THREATS), EFFECT (THREATS) and

IMPORTANCE (THREATS) fields.

Fig. II.1.42. Probability (Threats), Effect (Threats) and

Importance (Threats)

 173

 15. Click OK to close this dialog and apply the table.

We are ready to carry out a qualitative risk analysis of our

project. Note that we have not done a risk analysis, however,

the plus sign or minus sign is already displayed in the

IMPORTANCE column for opportunities and threats. The fact

is that when we determined the conditions for the graphic

indicators, we indicated "less than or equal to 4".

 16. Do an assessment of the likelihood and impact for

those opportunities and threats that we identified with you.

Probability we will evaluate as "average", but in real life you

must clearly understand the context of your company, so the

probability estimate will be more accurate. Influence for the

possibility we will point out as "high", and for the threat of

"very high".

Fig. II.1.43. Evaluation of Probability and Importance

 17. In conclusion of the qualitative risk analysis, you

can identify the root causes of the risks and perform the

ranking of risks by priorities.

 174

Fig. II.1.44. Ranking of risks by priorities

Part 4: Planning responses to risks

 1. Open the More Tables dialog box.

Fig. II.1.45. More Tables

 2. In the Other Tables dialog box that appears, click

Edit.

 3. In the Define a table in the project ... dialog box, go

to the very last line and add two fields: Directory2 encoding

and Text4. These fields are still free and we can add the

necessary information to it.

 175

Fig. II.1.46. Add the necessary information

 4. Click OK to close this dialog box and click. Apply to

return to this table. You see that we have two additional fields

that do not yet contain any information. In addition, the field

headers are impersonal in nature - Directory encoding2 and

Text4. To configure these fields, right-click the heading for the

Directory Encoding field2 and select the Custom Fields

command.

Fig. II.1.47. Custom Fields

 5. In the Custom Fields window that opens, select the

Directory Encoding field2 and click Rename. Enter the name

of the STRATEGY OF THE RESPONCE. Then click the

Substitution button and in the window that opens, enter the

following data. When entering data, do not forget to add a

 176

second level in the Code Mask. After entering the data, click

Close.

Fig. II.1.48. Strategy of the Responce

 6. In the Custom Fields dialog box, go to the Text

field, and then click Rename and type the name of the activity.

In this field, we will keep a brief description of the risk

management activities.

Fig. II.1.49. Name of the Activity

 177

 7. Click OK two times to complete the risk analysis. In

our table, choose a strategy for responding to risks

(opportunities and threats) and make a brief description of the

measures to manage these risks

 Fig. II.1.50. Brief description of the measures

II.1.3. Visual reports in MS Project

Performance of work

Reports in MS Project are for creating reports in the

form of graphs, charts, tables, etc. in the Project within the

familiar Office infrastructure of your project data to analyze

your project and then share the results with others. There are

many ready-made reports, but you can also edit and customize

them.

1. Let's create the first report, for this we will use the

standard template. Select the tab reports, dashboards,

BURNDOWN.

 178

Fig. II.1.51. Reports, Dashboards, Burndown

2. Burndown shows which part of the work is

completed and how much is left. If the line of the remaining

total labor is steeper, it is possible that the project will not be

completed on time. That is, the orange line shows how it

should be in an idyllic scenario, but as we see on the blue line,

which shows the current state of our remaining labor, our

resources are rapidly ending and the project may not be

completed on time.

 Fig. II.1.52. Report, Burndown

 179

3. Further we choose the following offered standard

report COST OVERVIEW

In the left part we see the amount: how much money was

allocated for the project, how much has been spent at this stage

of implementation in 40%, the funds that remained and the

costs in excess of the norm for one reason or another.

 Fig. II.1.53. Cost overview

Also, pay attention to the table in our project, which

corresponds to these charts, it is obvious that in the first variant

everything is much simpler and more understandable.

 Fig. II.1.54. Cost overview table

 In the lower right corner is also a graph that graphically

shows the above amounts.

 180

 4. But on the schedule, the PROGRESS VERSUS

COST should be paid attention.

Progress made versus the cost spent over time. If % Complete

line below the cumulative cost line, you project may be over

budget.

 This is easy to understand, since we see that the project

is completed at 40% and our cost line exceeds this number, and

already at around 42-43%.

 Fig. II.1.55. Progress versus Cost

5. The next report will show us the PROJECT

OVERVIEW

 Fig. II.1.56. Project overview

 181

Here we can see the overall percentage of completion of the

project, and the time when the project should be completed.

 Here we can include a report on UPCOMING TASK

 Fig. II.1.57. Upcoming Task

This report shows the current task, the percentage of its

implementation and the forthcoming next task, in this case,

after the completion of testing, it will be necessary to draw up

documents for delivery of the project to the customer.

5. Now go to the section Reports, Costs, select the

CASH FLOW

 Fig. II.1.58. Cash Flow
 Let's look at the example of this report and see how we

can edit the finished schedule.

 182

 Click 2 times on the graph that you want to change, on

the right appears the editing menu.

 Fig. II.1.59. Editing Menu

 Let's change the time period, click Edit, change the

units from days to weeks.

 Fig. II.1.60. Changing the time period

 This graph shows the total costs (all project costs for

this period), and quarterly costs (in this case, selected for

weeks from September 18 to October 23), it turns out that a

huge amount of information is placed on one compact

schedule.

 183

6. Further we can look at the TASK COST

OVERVIEW

On the left chart, we can see the actual and remaining labor

resources (that is, we see how much has already gone to pay

for the work of one or another specialist, and how much is still

available), as well as the exact amounts shown in the table and

the staff rate per hour of work.

 Along the labor force, we still have material, such as

printer paper, or coffee for employees, although the costs are

not so great, but these resources are also very important.

 The cost ratio for each category can be viewed as a pie

chart on the right.

 Fig. II.1.61. Task Cost Overview

These charts correspond to the following table in the project,

agree that on the charts you can find the information you need

much quicker.

 Fig. II.1.62. Task Cost Overview - Table

 184

This category also includes the report WORK OVERVIEW

 Fig. II.1.63. Work Overview

 On the top schedule WORK, we can immediately

conclude that: If the line of the remaining total labor costs falls

down, the project implementation may be delayed. (it is very

convenient that this is written in the tooltip immediately near

the graph)

 Pay attention to the graph at the bottom right, it displays

the remaining availability of labor resources by the example of

all project specialists, the resource ends when the job

completes, but as soon as the employee performs his part of the

work and the project moves to another person, the labor

resource of the first starts to recover.

 Fig. II.1.64. Work Overview - more

 185

7. We will finish our study of this new function of

visual reports with reports about TASK PROGRESS

Here we can see a general pie chart of the state of the tasks, as

well as tasks that need to be completed on time, and can not be

shifted or delayed.

 Fig. II.1.65. Critical Tasks

 The second graph shows milestones (key project dates),

and a schedule with the exact number of completed and

remaining tasks.

 8. Actually, you can create your own report, edit it as

you like, specify stylistics, types of graphs, colors, etc.

 Fig. II.1.66. Your own report

 186

Сontrol questions and tasks for part II.1

1) Name the stages of the life cycle of software development.

2) How to configure MS Project?

3) How data is stored and displayed in MS Project (what are

"internal" and "external" tables)?

4) What standard tables are part of MS Project?

5) What is a Gantt chart?

6) How is the group formatting of Gantt chart elements?

7) Name the built-in versions of Gantt charts in MS Project and

describe their purpose.

8) How the skeletal plan of the project is made?

9) What is a milestone? How to create milestones in MS

Project?

10) What types of connections can be defined between tasks in

MS Project?

11) What is a phase and how phases are created in MS Project?

12) Create a new project in the Microsoft Project.

13) Build a Gantt chart tracking the critical path of the project.

14) Plan resources (labour, material, financial) for tasks and

subtasks.

15) What are risks in the Microsoft Project environment?

16) Identification the risks. Classification of risks

15) In the Microsoft Project environment create and enter risks

in the previously created project.

16) Identify the risks. Carry out the classification of risks

17) Carry out a qualitative risk analysis

18) Study and use the main features of MS Project for creating

reports

19) Upcoming Task report

20) Cash Flow report

21) Work Overview report

22) Task Cost Overview report

23) Create your own report

 187

II.2. PRACTICAL METHODS OF WORK

 IN RATIONAL ROSE ENVIRONMENT

II.2.1. Visual modeling of information systems. use case and

actions diagrams in the design system Rational Rose

Theoretical information

Actors and Use cases

 Algorithm of creation actors in the program Rational

Rose:

1. Click the right mouse button on the section Use Case

View in the browser window.

2. In the context menu that appears, select New → Actor

. The actor called New Class will be added to the list of the

browser window.

3. Select a new item list and enter an Actor name.

Browser window with a list of actors for the courses registration

system is shown on Fig. II.2.1.

 Fig. II.2.1 Item list with Actor names

 To create Use Cases in program Rational Rose do the

following:

 1. Click the right mouse button on the section Use Case

View in the browser window.

 2. In the context menu that appears, select New Use

Case. In the list of the browser will be a new precedent.

 3. Enter the desired name for it.

 188

Fig. 2. List of actors

 Browser window with a list of Use Cases for

courses registration system is shown on Fig. II.2.2.

 Fig. II.2.2. List of Use cases

Use Case diagrams

 Use case diagram is a graphical representation of all or

part of the actors, precedents and their interactions in the system.

Each system has usually the main Use case diagram, which shows

the boundaries of the system and basic functional behavior of the

system. Other Use case diagrams can be created if necessary.

Some examples:

- a diagram that shows all the precedents for certain actor;

- a diagram that shows all the precedents implemented in this

iteration;

- a diagram showing a precedent and all his relations.

To create the main Use case diagram in program

Rational Rose do the following:

1. Double-click on the item Main in the Use Case

View in the list of the browser to open the diagram.

2. Select the actor in the browser and drag it to the

diagram using the mouse.

 189

3. Similarly place other necessary actors on the

diagram.

4. Select precedent in the browser and drag it to the

diagram using the mouse.

5. Similarly place other necessary precedents on the

diagram.

Also Actors and Use Cases can be obtained directly in

the diagram using the toolbar.

To create a communicative associations in program

Rational Rose:

1. On the toolbar, click the button Association or

button Unidirectional Association. If desired button is

missing, click the right mouse button on the toolbar, in the

context menu that appears, select Customize to add a button.

2. Click on the actor - the initiator of communication

and drag the communication line to the desired precedent.

To create a relation "include" in program Rational

Rose you need:

1. On the toolbar click on the button Unidirectional

Association.

2. Click on using precedent and drag a line of

communication to the used precedent.

3. Double-click on the communication line to open the

Specification.

4. In the Stereotype select "include".

Creating of relationship "complementary" in the

program Rational Rose involves the following steps:

1. Click on the Unidirectional Association on the

toolbar,.

2. Click on the precedent with additional features and

drag an association line on the basic precedent.

3. Double-click on the line to open the Specification.

4. In the Stereotype select "extend".

The main use case diagram for the system of

 190

registration of training courses is shown on fig. II.2.3.

The procedure to create of additional use case

diagrams in program Rational Rose:

1. Click the right mouse button on the section Use Case

View listed browser.

2. In the context menu that appears, select New → Use

Case Diagram .

3. Enter the name of the diagram.

4. Click the diagram and place on it the appropriate

actors, precedents and communications.

Additional use case diagram is shown on fig. II.2.4.

 Fig. II.2.3. Main Use Case Diagram

 Fig. II.2.4. Additional Use Case Diagram

Activities

Activity diagrams reflect the dynamics of the project

 191

and are the flow management schemes in system from action

to action and also parallel actions and alternative flows.

In particular point of lifecycle the action diagrams may

represent flows between functions or within a single function.

At different stages of the life cycle they are created to reflect

the sequence of operations.

Activity diagrams illustrate actions, transitions

between them, elements of choice and synchronization lines.

To construct the activity diagram in program Rational

Rose do the following:

1. Click the right mouse button on the section Use Case

View listed browser.

2. In the context menu that appears select New →

Activity Diagram. The new diagram will be added to the list.

3. Enter name of the diagram.

4. To open the diagram, double-click on it in the

browser.

Browser window with the action diagram is shown on

fig. II.2.5.

 Fig. II.2.5. Activity Diagram

Activities

The activity is the performance of certain behavior in

 192

flow of system control (see fig. II.2.6).

To create an activity in program Rational Rose:

1. Click the button Activity on the toolbar.

2. Click on the activity diagram to place the element

that represents the activity.

3. Enter a name for the new activity.

 Fig. II.2.6. Activities

Transitions

Transitions are used to show the path of control flow

from action to action (see. fig. II.2.7). They are usually made at

the end of certain action.

 To build transitions in the program Rational Rose:

 1. Click button Transition on the toolbar.

 2. Click on the initial action on the diagram and move

the arrow to the next action.

Fig. II.2.7. Activities and Transitions

Elements of choice

 193

In the simulation of control flows in systems often need

to show place of their separation on ground of conditional

Choice. Transitions from the choice element include restrictive

conditions that determine which direction of transition will be

selected. The elements of choice and conditions allow to set

an alternative way of control flow.

To create an element of choice in the program Rational

Rose do the following:

 1. Click on the button Decision on the toolbar.

 2. Click on the activity diagram to put an element

of choice in it.

 3. Enter a name for the new element.

 4. Click on the State Transition toolbar.

 5. Click on the action in the activity diagram and

move the arrow to the element of choice.

 The element of choice is shown in Fig. II.2.8.

Consistency of creation conditional branches in the

program Rational Rose:

 1. Click State Transition button on the toolbar.

 2. Click the element of choice in the activity diagram

and move the arrow to the further action.

 3. Double-click on the arrow to go to open the

Specification.

 Fig. II.2.8. Element of choice

 194

 4. Click on the tab Detail.

 5. In the box Guard Condition input condition of

transition .

 Conditional branches are depicted in Fig. II.2.9.

Synchronization lines

 Typically in the stream there are actions that are

performed in parallel. Synchronization line allows you to

specify the need of simultaneous execution, and also provides

the whole performance of actions in a stream (that indicates

the need to complete certain actions to move to the next. Thus,

the synchronization lines can have multiple lines of input

transitions and a single output in the flow or one input and a

few outgoing.

To create a synchronization line in program Rational

Rose:

1. Click on the button Horizontal Synchronization or

Vertical Synchronization on the toolbar.

2. Click on the activity diagram to put on it a

synchronization line .

3. Click on the button State Transition on the toolbar

and add the necessary input and output transitions to the

 Fig. II.2.9. Conditional branches

 195

synchronization line.

Synchronization lines are shown on fig. II.2.10.

 Fig. II.2.10. Synchronization lines

Swimlanes

Swimlanes divide the activity diagram in several areas.

This is necessary in order to show who is responsible for the

implementation of activities at each site.

Algorithm of creation of swimlanes in the program

Rational Rose:

1. Click on the button Swimlane on the toolbar.

2. Click on the activity diagram to create a new section

called New Swimlane.

3. Double-click on the name of the new section to open

the Specification (Options).

4. Enter the desired name in the field Name.

5. To resize, move the section of the border.

6. Move all the necessary activities and transitions on

 Fig. 11.

Synchronization lines

 196

the diagram into the new section.

Activity diagram with swimlanes is shown on fig.

II.2.11.

 Fig. II.2.11. Swimlanes

The start and the end states

To indicate the initial and final states in the flow of

system control the special characters are used. The start state

is represented by solid circle, and the end - by solid circle,

circled by additional circle. Usually in the flow there is one

start state and several end states - for each alternative

direction.

The sequence of creating the start and the end states in

program Rational Rose:

1. Click on the button Start State or End State on the

toolbar.

2. Click on the activity diagram to put the symbol of the

start or the end state on it.

 197

3. If you added the initial state, click on the button State

Transition on the toolbar, and then on the symbol and the initial

state transitioned to the first steps in the flow. Similarly

include the final state to the diagram.

The activity diagram with start and end states is shown

on fig. II.2.12.

 Fig. II.2.12. Start and end states

II.2.2. Development of class diagram as a model

of real object

Theoretical information

Classes

 An object is some kind of real world essence or

conceptual essence. The object may be something specific,

such as a truck or computer, or conceptual, such as a chemical

process, a banking transaction, a trade order, a credit history, or

a rate of return.

 198

 An object is a concept, abstraction, or thing with

clearly defined boundaries and meaning to the system. Each

object in the system has three characteristics: state, behavior

and individuality.

 The condition of an object is called one of the

conditions in which it can be. The state of the system usually

changes over time and is determined by a set of properties

called attributes, property values, and relationships between

objects. For example, a training course object in a course

registration system may be in one of two states: open to

enrollment or closed to enrollment. If the number of students

enrolled in the course is less than ten, the course enrollment

continues. After registration of the tenth student, it is

terminated.

 Behavior determines how an object responds to

requests from other objects and what the object itself can do.

The behavior is implemented using a set of operations for the

object. In the course registration system, the object of the

training course may have operations to add a student and

remove a student.

 Individuality means that each object is unique, even

if its state is identical to that of another object.

 Class is a description of a group of objects with

common properties (attributes), behavior (operations),

relationships with other objects, and semantics. So the class is a

template for creating an object.

 Each object is an instance of a particular class and

cannot be an instance of several classes. For example, a class

training course may be defined by the following characteristics:

 - attributes - place of employment, time of employment;

 - operations - to get a class, get class time, add a student to

the course.

 Class represents one and only one abstraction, that is,

it must reflect one basic essence. For example, a class that can

 199

store student information and course data that a student has

attended for several years is not a "good" class because it does

not represent one entity. This class should be divided into two

related classes: student and student history.

 Class names are selected according to the concepts of

the visual area. In UML, classes are represented as separated

rectangles. The upper section specifies the name of the class,

the middle section contains its structure - attributes, and the

lower section describes its behavior - operations. The class is

shown in fig. II.2.13.

Fig. II.2.13. а) A class created in a browser window

 b)Notation of the UML language for the class

 Each object is an instance of a particular class and

cannot be an instance of several classes. For example, a class

training course may be determined by the following

characteristics:

 - attributes - place of employment, time of employment;

 - operations - to get a class, get class time, add a student to

the course.

 The procedure for the construction of classes in the

program Rational Rose:

 1. Click the right mouse button on the section Logical

View in a browser window.

 2. In the context menu that appears , select New →

Class. A new class called NewClass will be added to the

a) b)

 200

browser list .

 3. Enter class name.

 Consistency create class diagram to show the

attributes and operations in program Rational Rose:

 1. Click the right mouse button on a package in the

browser window.

 2. In the context menu that appears, select New →

Class Diagram. A new diagram will be added to the browser

list.

 3. Enter the name of the new diagram.

 To display all attributes and operations in program

Rational Rose do the following:

 1. Click the right mouse button on a class in the

diagram.

 2. In the context menu that appears select Options →

Show All Attributes.

 3. Call the class context menu and select Options →

Show All Operations.

 Class diagram for the package Items of University is

shown on Fig. II.2.14.

 Fig. II.2.14. Class diagram for the package Items

 Fig.15.

Class diagram

 201

Sequence of creation relation of inheritance in

program Rational Rose:

1. Open the class diagram, which shows the hierarchy

of classes.

2. Click on the button Class on the toolbar, and then on

the diagram to place here class.

3. Enter the name of the class. The class can also be

created in browser and moved to the diagram.

4. Click on the button Generalization in the toolbar.

5. Click on the subclass and draw a line of

communication to the superclass.

Relations of inheritance are shown on fig. II.2.15.

 Fig. II.2.15. Relations of inheritance

The class in the browser window is shown in fig.

II.2.16.

 Fig. II.2.16. Class Student

 202

 An entity class is used to model data and behavior with

a long lifecycle. This type of class can represent the essence of

the real world or the internal elements of the system. Such

classes are usually independent of the environment, that is,

they are insensitive to the interaction of the environment with

the system. Therefore, they are application-independent and

can be used in a variety of applications.

 The first step is to study the responsibilities outlined in

the event stream to identify precedents (what the system should

do). Essential classes are usually the classes that the system

needs to perform certain responsibilities

 The entity classes are usually defined at the processing

stage. They are often called visual area classes because they are

abstractions of real-world objects.

Boundary classes provide interaction between the environment

and the internal elements of the system. These classes provide

an interface for the user or other system (that is, for the actor).

They form an externally dependent part of the system and are

used to model the system interfaces.

 Actor / script pairs are studied to identify boundary

classes. Such classes defined in the processing phase are

usually top-level classes. For example, you can model a

window but not model its dialog elements and buttons. In this

case, you will describe the requirements of the user interface

but do not implement it.

 Boundary classes are also used to communicate with

other systems. At the design stage, these classes are being

refined and discussed for the implementation of interaction

protocols.

 Control classes are used to model the sequential

behavior of one or more precedents and to coordinate events

that implement the behavior they contain.

 Governing classes can be represented as classes,

 203

"executing" precedent and determining its dynamics. They are

usually application dependent.

 In the early stages of processing, management classes

are added for each actor / precedent pair. Such classes

determine the flow of events in precedents.

 The management class for each actor / precedent pair is

created initially. In further analysis and design, management

classes can be excluded, separated, or combined.

 Stages of creating stereotypes for classes in the Rational

Rose program (fig. 83):

 1. Right-click on the class name in the browser list.

 2. In the context menu that appears, select Open

Specification.

Fig. II.2.17. Classes for the script for adding a training course

3. Click the General tab.

4. In the list that opens, - Stereotype - select the desired

stereotype. To create a new stereotype, enter its name in the

Stereotype list box.

If there are not many classes in the system, it is quite

easy to manage them. But many systems consist of a large

number of classes, so a mechanism is needed to break them

down into groups and make it easier to manage and reuse. The

concept of packages is useful here.

A package in a logical representation of a model is a

 204

collection of classes and other related packages. By combining

classes into packages, we can get a higher-level representation

of the model. By examining the contents of the package, on the

contrary, we get a more detailed view.

Each package contains an interface implemented by a

set of its public classes, that is, with which classes from other

packages can communicate. Other package classes are

implementation classes that do not interact with classes in other

packages.

In a sophisticated system, packets can be created at the

processing stage to facilitate perception. In a simpler system,

the classes highlighted in the analysis phase can be grouped

into one package representing the system itself. In the course of

further analysis and design, packages are needed to group the

classes used in the system architecture.

In UML, packets are represented as folders.

To create packages in Rational Rose:

1. Right-click Logical view in the browser window.

2. In the popup menu that appears, select New →

Package.

3. Enter the desired package name.

The package created in the browser list is shown in fig.

84. After creating the package, you can place the required

classes in it.

Fig. II.2.18. Package in browser

 205

Objects and classes in the course registration system

Consider the scenario of adding a course (which is an

internal stream of precedent for selecting subjects to teach.

This scenario allows the teacher to select a course for a

particular semester.

Although we look at this process step by step, in

practice most steps can be done at the same time.

This precedent only interacts with the actor teacher.

This scenario is only one of the opportunities provided by

precedent (it also determines that the teacher can modify,

delete, view, and print courses). This means that there must be

a mechanism in the system that allows the teacher to choose

the desired action. To provide the needs of the teacher, a

special class is created - the course parameters of the teacher.

Additionally, we can specify a class that is used to add

new courses available to the teacher - to add a training course.

This scenario consists of subjects, training courses, and

assignments of teachers. We can distinguish three class-

entities: subject, training course and teacher.

We will add one management class to handle the event

stream for precedent - the teacher's course manager.

Now classes (with selected stereotypes) can be added to

the model (see Fig. II.2.19).

Fig. II.2.19. Packages

 206

 The next step is to merge the classes into packages. At

this stage, we distinguish six classes: subject, training course,

teacher, teacher course parameters, adding training course and

teacher course manager. They can be divided into three logical

groups: university-specific objects; objects containing

information about people; interfaces for actors. So we can

create the following packages: Interfaces, University Objects

and People Info. The classes are then placed into appropriate

packages (see Figure 22).

Class diagrams

 As new classes are added to the system, their text

rendering becomes uncomfortable. Class diagrams help

graphically represent some or all of the classes in the model.

 The main class diagram in the logical representation of

the model usually displays the system packages. Each package

also has its main class diagram, which usually contains public

classes of the package. Other charts are created as needed.

 Here are some typical examples of using class

diagrams:

- viewing all classes of implementation in the package;

- reviewing the structure and behavior of one or more classes;

 - View the class hierarchy.

 Rational Rose automatically creates a master class

diagram in the logical representation of the model.

 To add packages to the main class diagram, you must

do the following:

1. Double-click the Main diagram list in the browser to open

the diagram.

2. Select the desired package from the list.

3. Drag the package to the chart.

The main class diagram for the registration system is shown in

fig. II.2.20.

 207

Stages of creating a master class diagram of a package

in Rational Rose:

1. Double-click the package image in the class diagram.

The package will open and the main class diagram will appear.

2. Select the class you want from the browser list and

drag it to the chart with the mouse. You can use the Format →

Stereotype display menu command to display the class

stereotype in the diagram.

Conclusions

Objects - a computer representation of entities (objects

of the real world or concepts invented by man). An object is a

concept, abstraction, or thing with clearly defined boundaries

and meaning for the system. Each object in the system has three

characteristics: status, behavior and personality. The state of the

object is one of the conditions in which it can be. Behavior

characterizes an object and shows how it responds to requests

from other objects. Individuality means that each object is

unique, even if its abundance is identical to that of another

object.

A class is a description of a group of objects with

common properties (attributes), behavior (operations),

relationships with other objects (associative or aggregation),

and semantics.

A package in the logical representation of a model is a

 Fig. II.2.20. Main class diagram

 208

collection of classes and other related packages. By combining

classes into packages, we can get a higher-level representation

of the model.

Class diagrams help graphically depict some or all of the

system classes. Class diagrams can also be created in the

precedent model view. They are usually attached to a precedent

and contain representations of the classes involved in their

execution.

Defining relationships

 The system consists of a large number of classes and

objects. Its behavior is ensured by the interaction of objects.

For example, a student is added to a course when a message is

added to the course to add a student. In this case, it is said that

the object sends a message to another object. Relationships

serve as conductors between objects. Two types of

relationships that can be distinguished in the analysis phase are

association and aggregation.

 An association is a bidirectional semantic link between.

classes. This is not a data flow defined in structural analysis

and design - data can flow in both directions of associative

communication. The presence of association between classes

indicates that the objects of these classes are interconnected.

For example, associative relations between subject classes and

the course manager mean that the objects of the subject class

are related to the objects of the course manager class. The

number of related objects depends on the strength of the

associative relationship.

In UML, associative relationships are represented as a

line connecting connected objects.

The sequence of associative relationships in Rational

Rose:

1. In the toolbar, click the Association button. If it is not,

right-click in the toolbar and select Customize from the context-

sensitive menu that appears.

 209

2. Click one of the classes in the class diagram.

3. Drag the associative link to the second class.

The associative relationship between classes is shown in

Fig. II.2.21.

Aggregation is a special form of association between the

whole and its part or parts. Aggregation is known as a "part of"

or "containing" type relationship.

To create aggregation relationships in Rational Rose:

1. In the toolbar, click the Aggregation button. If it does

not, right-click on the toolbar and select Customize from the

context menu that appears.

2. In the class diagram, click on the class that appears as

a whole and drag the aggregation link to the class that is part of

it.

If two classes are rigidly bound by the whole-to-part

relationship, then this is a typical aggregation relationship

Whether the relationship is an association or an

aggregation often depends on the subject area. To determine the

relationship between the two classes, study the scenarios. The

transmission of messages between objects indicates that the

latter interact with each other. Associations and aggregations

provide an opportunity for interaction.

 Fig. II.2.21. Associative

relationships

 210

 The diagram of classes with the indicated relations is

shown in fig. II.2.22

Relationship between packages
Relationships between packages are also included in the

model. This type of communication is a dependency relation

and is represented as a dotted arrow pointing to the dependent

packet. If packet A depends on packet B, then one or more

classes in packet A initiate communication with one or more

public classes in packet B. Package A in this case is called

packet-client, and packet B is packet-supplier.

Relationships between packages are revealed by

examining scenarios and relationships between classes of the

system. Because this is an iterative process, relationships can

change during analysis and design.

In a script to add a training course, the Add a Training

Course class sends a class manager message to the teacher.

This indicates that there is a connection between the Interfaces

package and the University Objects. At this stage, we cannot

isolate any relationship with the People Information package.

To create relationships between packages in Rational

 Fig. II.2.22. Diagram of classes with the indicated relations

 211

Rose:

1. Click the Dependency Relationship button in the

toolbar.

2. Click on the client package and drag the line to the

provider package.

Conclusions

 Relationships act as a guide between objects. The two types

of object relations that can be distinguished in the analysis phase are

associations and aggregations. The association is called bidirectional

semantic communication between classes. Aggregation is a special form

of association between the whole and its part or parts.

 Scenarios are being explored to find relationships between the

two classes. Packages can be linked by a dependency relation. If packet

A depends on packet B, then one or more classes in packet A initiate

communication with one or more public classes in packet B.

Attributes

 Most class attributes are found when analyzing the

subject area, system requirements, and event flow descriptions,

and when compiling a class description. In addition, the visual

area itself is a good source for defining attributes. For example,

system requirements state that the subject name information, its

description and number of teaching hours are contained in the

catalog of training courses per semester. From this it follows

that the title, description and number of lessons are the

attributes of the subject class.

 The Rational Rose attribute creation sequence:

 1. Right-click on a class in the browser window.

 2. In the popup menu that appears, select New →

Attribute.

 3. Enter a name for the new attribute.

 The attribute definitions in the documentation should

be concise and clear and contain information about the attribute

assignment, not its structure. Here is an unsuccessful example

of the attribute description of the class name of the subject:

 212

"Character string up to 15 characters long". The following

variant will be correct: "Name of academic subject used in

university publications".

 To describe attributes in Rational Rose:

 1. In the browser window, click the "+" icon to the left

of the class name to open a list of its properties.

 2. Select an attribute by clicking on it.

 3. Place the cursor in the description box and enter a

description for the class attribute.

 The class implements a number of responsibilities

that determine the behavior of its objects. Responsibilities are

fulfilled through class-specific operations.

 To create an operation in Rational Rose:

 1. Right-click on a class in the browser window.

 2. In the popup menu that appears, select New →

Operation.

 3. Enter a name for the new operation.

 Attributes and operations can be shown in the class

diagram. Most often, it is created to reflect the structure and

behavior of package classes. Relationships to this chart are

usually not tolerated.

 The sequence of creating a class diagram to display the

attributes and operations of a package in Rational Rose:

 1. Right-click on the package in the browser window.

 2. In the popup menu that appears, select New → Class

Diagram. A new chart will be added to your browser list.

 3. Enter a name for the new chart.

 To display all attributes and operations in Rational

Rose, follow these steps:

 1. Right-click on a class in the chart window.

 2. In the popup menu that appears, select Options →

Show All Attributes.

 3. Recall the context menu for the class and select

Options → Show All Operations.

 213

 The class diagram for the University Objects package is shown

in fig. II.2.23.

Fig. II.2.23 Class diagram for the University Objects package

 A relationship can also have structure and behavior.

This occurs when the information is linked to objects, not to

the object itself.

 Consider the following example. A student can attend

up to four training courses, and a training course can be read by

several students - from three to ten. Each student receives a

grade for the course. Where should the score be stored? It does

not belong to the student because he / she will probably receive

different grades in different subjects. The grade does not

belong to the course, because students will receive different

grades for this course. Assessment information relates to the

relationship between the student and the course. They are

modeled using an associative class that behaves like any other

class and can also be relevant. In our example, the student

receives an assessment report that includes the associated

assessment objects.

 To create associative classes in a program in Rational

Rose:

1. Click the Class button on the toolbar.

2. Click on the diagram to place a class on it.

3. Enter a name for the class.

 214

4. Add the necessary attributes and operations for the class.

5. Click the Association Class button in the toolbar.

6. Click on the associative class and draw a line to connect

the classes that associate the associative class.

7. If necessary, add additional relations to the associative

class.

The associative grade is shown in Fig. II.2.24.

Conclusions

 The class performs a number of responsibilities that determine

the behavior of its objects. Duties are performed through specific

operations. The structure of the object is described by the attributes of

the class.

 Each attribute is a data field contained in a class object. An

object derived from a class endowed with the values of all class

attributes. Attributes and operations defined for the class are the main

significant and functional elements in the application being developed.

 Many class attributes are found when analyzing the domain,

system requirements, and description of event streams, as well as when

compiling a class description. In addition, the domain itself is a good

source for defining attributes.

 A relationship can also have structure and behavior. This occurs

 Fig. II.2.24. Associative class

 215

when the information is linked to objects, not to the object itself.

Relationship structure and behavior are modeled using associative

classes.

Inheritance

 Inheritance is called the relationship between classes when

one class uses part of the structure and behavior of another or more

classes. Imitation creates a hierarchy of abstractions in which a

subclass is inherited from one or more superclasses. Inheritance is

also called a hierarchy of the same type or appearance. The

subclass inherits all the attributes, operations, and relationships

defined in each of its superclasses. Therefore, all attributes and

operations defined at the top level of the hierarchy will be inherited

by classes at the lower levels. Additional attributes and operations

applied only at this level of the hierarchy can be added to the

subclass. The subclass may contain its own implementation of the

inherited operation.

 There are no restrictions on the number of classes in the

hierarchy.

 Inheritance allows you to reuse classes. You can create a

class for one application, and then generate a subclass with

advanced functionality for use in another application.

 There are two ways to define inheritance - generalization

and specialization. In any system under development, both methods

are commonly used.

 The sequence of creating an Fig. 103. The relation of

imitation inheritance relationship in Rational Rose:

 1. Open the class diagram showing the inheritance

hierarchy.

 2. Click the Class button on the toolbar and then the

diagram to place a class on it.

 3. Enter a name for the class. The class can also be

created in a browser and moved to a chart.

 4. Click the Generalization button in the toolbar.

 5. Click on the subclass and draw the link to the

 216

superclass.

The inheritance ratio is shown in Fig. II.2.25.

 Fig. II.2.25. The relation of inheritance

Inheritance tree

 The basis for specialization (that is, the purpose of creating a

subclass) in relation to imitation is called a discriminator.

 For example, one of the discriminators for the class is the

subject of study. The classes in the subject and the extramural subject

may become subclasses for the class of objects created on the basis of

this discriminator. Inheritance ratio for all subclasses received from

one discriminator, are represented in the form of a tree. Another

subclass of a class may be a compulsory class. This subclass will not

be part of the imitation tree because it belongs to another

discriminator - the object type. The issue of identifying multiple

discriminators for one class should be carefully considered. For

example, what happens if the required item is also full-time? Is this an

example of multiple inheritance? Do you need to apply aggregation

here? In the course of analyzing and designing the answers to these

questions, we will gradually get a complete model structure.

 To create an inheritance tree in Rational Rose:

 1. Open the class diagram showing the inheritance

hierarchy.

 2. Click the Class button on the toolbar and then the chart

 217

to place a class on it.

 3. Enter a name for the class. The class can also be created

in a browser and moved to a chart.

 4. Click the Generalization button on the toolbar.

 5. Click on the subclass and draw the link to the

superclass.

 6. For each subclass that is part of the inheritance tree:

click the Generalization button in the toolbar, click on the

subclass, and draw a generic link to the inheritance icon (as a

triangle).

The tree-like relationship of inheritance is shown in Fig.

II.2.26.

 Fig. II.2.26. Inheritance hierarchy for the class

 After creating a superclass, attributes, operations, and

relationships are placed at the highest level of the hierarchy

whenever possible. What properties should be transferred? Consider

a hierarchy with a base user class. The attributes, operations, and

relationships for the subclasses are shown in Figs. 31. Since the

attributes of the name and id are the same format, they can be

confidently transferred to the superclass of the user.

 To move attributes and operations in Rational Rose:

1. In the browser window, click the "+" icon to the left of the

subclass to open a list of its properties.

 218

2. Select the attribute or operation you want to move.

3. Drag an attribute or operation to a superclass.

 4. Remove this attribute or operation from other subclasses.

The inheritance hierarchy after the attribute transfer is shown in

Fig. II.2.27.

 Fig. II.2.27. Attributes Moved to Superclass

 Single and multiple inheritance

 In single inheritance, the class contains a single set of

descendants, that is, one chain of superclasses (for example, a car is

a car and a car is a vehicle). Multiple imitation involves more than

one chain of superclasses (an amphibian is a car, a car is a vehicle, at

the same time an amphibian is a boat and a boat is a vehicle).

Multiple inheritance raises a number of problems, including name

conflict and multiple copies of inherited properties. The way to

solve such problems is chosen depending on the programming

language, in particular, virtual base classes in C ++. Multiple

inheritance can cause confusing and hard-to-follow code - the more

superclasses it is, the harder it is to determine where it came from

and what would happen when making changes. Conclusion: Use

multiple inheritance only when needed and with extreme caution.

Inheritance and aggregation

 Inheritance is often misused. There is an opinion that "the

more it is used, the better the code will become". This is a

 219

mistake. In fact, misuse of imitation can lead to problems. For

example, a student may study full-time or part-time. Let's

create a superclass student and two subclasses - full-time

student and part-time student. There are some problems with

this structure. What happens if:

 - the student of the full-time department decides to go to

correspondence? This means that the object will have to

change its class ?;

 - Will another dimension be added (for example, a student

receiving a scholarship and not receiving a scholarship)? New

subclasses will be needed here to present scholarship

information, as well as multiple inheritance for support for all

combinations (full-time student, scholarship recipient, part-

time student, scholarship recipient, and so on).

 Inheritance should serve to separate the community

from the specific. Aggregation - to reflect combined

relationships. Often, both types of relationships are used

together. The student class has a classification (aggregation),

which, in turn, is divided into full-time and part-time

(imitation) classes - see. Fig. II.2.28.

 Fig. II.2.28. Inheritance and aggregation

 220

Conclusions

 Inheritance allows you to create a hierarchy of classes

when shared structure and behavior are shared between them.

The term "superclass" refers to a class containing common

information. Descendant classes are called subclasses. The

subclass inherits all the attributes, operations, and relationships

defined in all its superclasses.

 II.1.3. Software for class diagram implementation

Theoretical information

 A class is a special design of an object-oriented

programming language used to group related variables and

functions. In this case, according to OOP terminology, global

class variables (member variables) are called data fields (also

properties or attributes), and function members are called class

methods. A created and initialized

class instance is called a class object. Based on a single class,

you can create multiple objects that will differ in their state

(field values).

 Classes can be used to create subclasses that inherit the

properties and behavior of parent classes. This allows you to

create an entire class hierarchy.

 The methods implement the behavior of objects.

Practically all work with objects occurs through methods. They

can change the state of the object or simply give access to the

data encapsulated in the object. There are several types of

methods that have some differences in different programming

languages. Different access rights can be assigned to methods

and data fields, which will depend on them from different parts

of the code. Access rights and type of methods are specified by

modifiers when describing methods. The method that creates

and initialises an instance of a class is called a class

constructor. The method that implements an object is called a

class destructor.

 221

 Basic principles of object-oriented programming:

- encapsulation;

- inheritance;

- polymorphism.

 Encapsulation is a mechanism that combines data and

methods that process this data and protects both against

external influences or misuse.

In the middle of the object, data and methods can have

different degrees of openness. Typically, open class members

are used to provide an interface controlled by its closed part.

 Inheritance is the process by which one object can

acquire the properties of another object and add features

specific to itself.

 Polymorphism is a programming concept that uses a

common interface to process data of various specialized types.

 A method in object-oriented programming is a

subroutine (procedure, function) that is used exclusively with a

class or with an object.

 Similar to a procedure in procedural programming

languages, a method typically consists of a sequence of

operations to perform an action, a set of input parameters to

configure this action, and possibly an output value of some

type (value to be returned).

 The purpose of the methods is to take some action on

the class fields (member variables) and provide a mechanism

for accessing those data fields that are encapsulated in the

object or class.

 Operator overloading is one way of realizing a

polymorphism that consists in the possibility of several

different applications of the operator having the same name but

differing in the types of parameters to which they are applied

simultaneously.

 222

Work execution

 In the Rational Rose environment, we create a matrix

class (Fig. II.2.29).

 Fig. II.2.29. Matrix class in the environment Rational Rose

 Let’s describe our class in the Documentation section

(Fig. II.2.30).

 Fig. II.2.30. Class description

 Let's create class fields - two-dimensional array and its

dimension (number of rows and columns) - see. Fig. II.2.31,

II.2.32, II.2.33.

 223

 Fig. II.2.31. The massiv variable and its description

 Fig. II.2.32. The n variable and its description

 224

 Fig. II.2.33. The m variable and its description

 Now let's create class methods, describe them, specify

the output type and input variables - see. Fig. II.2.34 - II.2.40.

 Fig. II.2.34. Class constructor and its description

 225

 Fig. II.2.35. Input parameters of the overloaded constructor

 Fig. II.2.36. Overloaded operator "+" and its description

 226

 Fig. II.2.37. Input parameter of overloaded operator "+"

 Fig. II.2.38. Overloaded operator "*" and its description

 227

Fig. II.2.39. The method of finding the determinant of the matrix

and its description

 Fig. II.2.40. Method of finding the inverted matrix and its

description

 228

We have this class with all the necessary fields and methods -

fig. II.2.41.

Fig. II.2.41. Matrix class with all the required fields and methods

 The next step is to generate the code. To do this, first

convert the model - see. Fig. II.2.42.

 Fig. II.2.42. Model conversion for code generation

 229

And now, actually, we generate the code - fig. II.2.43.

 Fig. II.2.43. Code Generation

 The generated code is shown in fig. II.2.44 and II.2.45.

 Fig. II.2.44. Matrix class header file

 230

Fig. II.2.45. The matrix class implementation file

 231

Сontrol questions and tasks for part II.2

1) Actors and Use cases in Rational Rose

2) Use Case diagrams

3) Activities. Activity diagrams

4) Transitions. Elements of choice

5) Synchronization lines. Swimlanes

6) The start and the end states

7) Identify the actors, use cases and actions.

8) Construct use case and actions diagrams.

9) Classes. Class diagrams

10) Associative and aggregation relations

11) Attributes of classes

12) Define classes according to the variant.

13) Define the relations of inheritance, aggregation and

association.

14) Build a class diagram .

15) Generate code in language C ++ for the diagram.

16) In the Rational Rose environment, create a class of

matrices and in it the necessary fields and methods. It is

mandatory to have two overloaded constructors, as well as

methods for adding, multiplying, finding the determinant and

inverting the matrix; in addition, matrix input and output

methods (from a file or from visual components on a form).

Add and multiply methods using overloaded + and *

statements.

17) Generate code in C ++

18) In C ++ Builder, create software that implements all the

classes described, and performs arbitrary actions on matrices.

 232

LITERATURE

1. Васильев А. Программирование на C++ в примерах

и задачах. М.: Эксмо, 2021. – 368 с.

2. Грекул В.И., Коровкина Н.Л., Левочкина Г.А.

Проектирование информационных систем. М.: Юрайт,

2017, 386 с.

3. Кватрани Т. Rational Rose 2000 и UML. Визуальное

моделирование. – М.: ДМК Пресс, 2001. – 176 с.

4. Кондаков А.И. САПР технологических процессов. –

М.: Издательский центр «Академия», 2007. – 272 с.

5. Левинсон Дж. Тестирование ПО с помощью Visual

Studio 2010. - М.: ЭКОМ-Паблишерз, 2012.

6. Липпман С., Лажойе Ж., Му Б. Язык

программирования C++. Базовый курс. - М.: Вильямс,

2016. - 1120 c.

7. Литвиненко Н. А. Технология программирования на

C++. – С.-Пб.: БХВ-Петербург, 2010. – 288с.

8. Мейер Дж. Д. Командная разработка с

использованием Visual Studio Team Foundation Server / Дж.

Д.Мейер, Дж. Тейлор, А. Макман, П. Бансод, К. Джонс -

Изд. Корпорация Microsoft, 2007.

9. Мейерс C. Эффективный и современный С++. М.:

Вильямс, 2016. - 304 c.

10. Орлов С.А. Программная инженерия. Технологии

разработки програмного обеспечения. – С.-Пб.: Питер,

2016, 640 с.

11. Прата С. Язык программирования C++ (C++11).

Лекции и упражнения, 6-е издание — М.: Вильямс, 2012.

— 1248 с.

12. Резанова В.Г., Резанова Н.М. Програмне

забезпечення для дослідження полімерних систем // К.:

АртЕк. - 2020. 358 с.

13. Страуструп Б. Язык программирования C++. Краткий

курс. 2-е издание. К.: Диалектика, 2019. – 369 с.

https://www.ozon.ru/person/344228/
https://www.ozon.ru/person/344229/
https://www.ozon.ru/person/1273570/

 233

14. Страуструп Б. Язык программирования С++.

Специальное издание М.: Бином, 2011. – 1136с

15. Токмаков Г.П. CASE-технологии проектирования

информационных систем. Ульяновск: УлГТУ, 2018. - 224 с

16. Чистов Д.В. Проектирование информационніх систем.

М.: Юрайт, 2016, 260 с.

17. Шалумов А.С., Никишкин С.И., Носков В.Н. Введение

в CALS-технологии. Ковров: КГТА, 2002. – 137с.

18. Шилдт Г. С++. Базовый курс. – М.: Диалектика-

Вильямс, 2018. – 624 с.

19. Шлее М. Qt 5.10. Профессиональное

программирование на C++. С.-Пб.: БХВ-Петербург, 2018. –

1074 с.

20. Щербань В.Ю., Краснитський С.М., Резанова В.Г.

Математичні моделі в САПР. Обрані розділи та приклади

застосування. – К.:КНУТД, 2011. – 219 с.

21. V. Yu. Shcherban’, V.G. Rezanova, T.I.Demkivska

Programming of numerical methods and examples of practical

application // К.: Education of Ukraine, 2021. – 150 p.

22. Stroustrup B. Programming: Principles and Practice Using

C++ (2nd Edition). Addison-Wesley Professional, 2014. –

1312 p.

 234

Резанова В.Г., Щербань В.Ю., Демківська Т.І.

 ТЕХНОЛОГІЇ РОЗРОБКИ

ПРОГРАМНИХ ПРОДУКТІВ
(англійською мовою)

Редактор Резанова В.Г.

Дизайн та верстка авторські

Формат 60*84/16
Папір офсетний 80гр/м2. Друк цифровий. Гарнітура Times New Roman

Умовн.-друк. арк. 14.75 Обл.- вид. арк. 7.80

Замовлення № 0202-0037
Підписано до друку 02.02.2022 р.

ТОВ «Видавничий дім «АртЕк»
04050, м. Київ, вул. Юрія Ільєнко, буд. 63

Тел.. 067 440 11 37 ph-artek@ukr.net

www.book-on-demand.com.ua
Свідоцтво про внесення суб’єкта видавничої прави

ДК №4779 від 15.10.14р.

mailto:artek@ukr.net

